
High Level Description of an ASIC
Implementing CPU Support and I/O Control

EDVIN CATOVIC
Computer Science and Engineering Program

DANIEL HEDBERG
Electrical Engineering Program

Master's Thesis
CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Engineering
Göteborg 2002

Innehållet i detta häfte är skyddat enligt Lagen om upphovsrätt, 1960:729,
och får inte reproduceras eller spridas i någon form utan medgivande av för-
fattaren. Förbudet gäller hela verket såväl som delar av verket och inkluderar
lagring i elektroniska och magnetiska media, visning på bildskärm samt
bandupptagning.

 Edvin Catovic och Daniel Hedberg, Göteborg 2002.

High level description of an ASIC implementing CPU support and I/O control

Abstract

This report details a simulator tool implemented by the authors.

In software projects where the hardware is unavailable, a simula-
tor can be a helpful tool when debugging the developed software.

The simulated hardware is a CPU board with I/O control and CPU
support functions for use in space applications.

The simulator tool consists of a cycle-true processor emulator and a
high level description of its environment. The high level description
is implemented as a loadable module attached to the third-party
developed processor emulator.

The report treats aspects on how the requirements on modularity,
performance and usability of the high level hardware description
were met. The trade-offs made to meet the requirements favour
functional behaviour consistency rather than cycle-true timing.

The developed tool has proved to be useful when debugging appli-
cation software providing better observability of the simulated sys-
tem than the target hardware.

Abstract

High level description of an ASIC implementing CPU support and I/O control

Abstract

High level description of an ASIC implementing CPU support and I/O control

Contents

1 Introduction 1

1.1 Background . 1
1.2 Purpose. 2
1.3 Method . 2
1.4 Scope. 2

2 Prerequisites 3

2.1 System Overview . 3
2.2 ERC32 . 4
2.3 COCOS Overview . 4

2.3.1 Processor Interface . 7
2.3.2 Parallel Internal Bus Master 7
2.3.3 M1553 Modules . 7
2.3.4 Alarm Signal Generator 11
2.3.5 Watchdog . 12

2.4 TSIM. 12
2.4.1 TSIM Core . 12
2.4.2 TSIM I/O Modules . 12

3 Requirements 17

3.1 User feed-back . 17
3.2 Performance . 17
3.3 Modularity . 18
3.4 Usability . 18

Contents

High level description of an ASIC implementing CPU support and I/O control

Contents

4 Implementation 19

4.1 Simulator Overview. 19
4.2 COCOS I/O Module . 20

4.2.1 Design Choice . 20
4.2.2 Modular Structure of the COCOS I/O Module. . 21
4.2.3 Module Specific User Interface. 22

4.3 COCOS I/O Submodules . 23
4.3.1 General Implementation of a Submodule 23
4.3.2 COCOS Core Modules . 25
4.3.3 Miscellaneous Modules . 26

4.4 User Interfaces. 28
4.4.1 COCOS Specific TSIM Commands 28
4.4.2 M1553 Environment Stimuli 29
4.4.3 M1553 Environment Log 31
4.4.4 COCOS Debug Feature . 32
4.4.5 The Local Address Space Visualizer. 32

5 Conclusion 35

5.1 Experiences . 35
5.2 Results . 35

5.2.1 Performance. 35
5.2.2 Modularity . 36
5.2.3 User Interface . 36
5.2.4 Usability. 36
5.2.5 Conclusion . 36

5.3 Future work . 37

Appendix A: Users’ and Developers’ Guide 43

1 Introduction . 43
2 The File Structure . 44
3 Compiling and Running . 45
4 The Creation of a Submodule . 45

4.1 The M1553X.c File. 45

Appendix B: Stimuli File Syntax 51

1 Stimuli File Syntax Definition 51

Introduction Page 1

High level description of an ASIC implementing CPU support and I/O control

1 Introduction

In this chapter we will introduce you to why and how this
Master’s thesis was carried out. We will also present you
with some facts about the company Saab Ericsson Space
that issued the project.

1.1 Background
In November 2001 we came in contact with the company Saab Eric-
sson Space. It is a company that supplies space equipment to com-
panies and organisations such as ESA. They describe themselves
as:

Saab Ericsson Space is an independent space equipment supplier.
We specialize in digital and microwave technologies and mechanics.
The main applications are navigation, telecommunications, obser-
vation and launchers.

The company has its headquarters in Gothenburg, Sweden and its
Division for Mechanical Systems in Linköping, Sweden. It also has
subsidiaries in Austria, Austrian Aerospace in Vienna, and in the
USA, Saab Ericsson Space Inc., with offices in Los Angeles, CA.

Saab Ericsson Space presented us a Master’s thesis with the aim of
developing a simulator for a CPU card with processor support func-
tions and I/O controller units implemented in a high-complex
ASIC1.

The project was carried out during the spring of 2002 at the compa-
ny headquarters in Gothenburg.

1. Abbreviation for Application Specific Integrated Circuit

High level description of an ASIC implementing CPU support and I/O control

Page 2 Introduction

1.2 Purpose
The software group at Saab Ericsson Space was involved in a
project where development of the software and the target hardware
run in parallel. The possibility to debug the software in the early
stages of the project was limited due to the lack of the target hard-
ware. The project, specially the software development part, would
benefit from an alternative debugging environment.

The purpose of the Master thesis was to develop the simulator for
the CPU card. The simulator would provide an alternative debug-
ging environment to the real target hardware as well as other de-
bugging features such as better observability than with the real
target hardware.

1.3 Method
Saab Ericsson Space already licensed a simulation tool called TSIM
developed by the Gaisler Research1 which simulates the processor
and memory mounted on the target hardware.

To develop the tool requested we used the built-in support in TSIM
to perform simulation of the communication hardware and its envi-
ronment. The communication hardware is an ASIC developed at
Saab Ericsson Space under the name COCOS2.

1.4 Scope
Due to the complexity of the communication hardware this Mas-
ter’s thesis would hardly suffice to implement the entire simulator.
Therefore the extent of this thesis was left open-ended. There was
however expressed a minimum requirement on finding a suitable
overall design including logging and stimuli facilities. An imple-
mentation of a specific unit for serial communication was also of
great interest.

If time remained, additional units were to be implemented.

1. http://www.gaisler.com
2. Abbreviation for Computer Core Support

Prerequisites Page 3

High level description of an ASIC implementing CPU support and I/O control

2 Prerequisites

In this chapter the simulated system is described with its
main parts, the ERC32 processor and the COCOS ASIC.
The TSIM simulator that is used to simulate the system is
also described. Since the COCOS ASIC and the CPU board
intellectual property is confidential to Saab Ericsson Space
AB the details of this chapter are limited.

2.1 System Overview
The simulated system is a CPU board based on the ERC32 proces-
sor and the COCOS ASIC. The block diagram of the board is shown
in Figure 2.1.

The main parts of the simulated system are the ERC32 processor
and the COCOS ASIC. In the simulated system TSIM provides sim-
ulation of the ERC32 processor while the simulation of the COCOS
ASIC is done in a loadable I/O module attached to TSIM. RAM and
ROM are simulated by TSIM.

Figure 2.1: System overview

ERC32

ROM

RAM
COCOS ASIC

Bulk-
MEM

TSIM

I/O module

I/O
channels

High level description of an ASIC implementing CPU support and I/O control

Page 4 Prerequisites

2.2 ERC32
The ERC32 is a 32-bit embedded RISC processor implementing the
SPARC V7 architecture specification [2]. It has been developed
with the support of ESA (European Space Agency) for space appli-
cations using a radiation tolerant CMOS process.

The board is based on the single chip implementation of the ERC32
processor called TSC695E. Memory controller and FPU are includ-
ed on-chip, as well as peripherals such as: watchdog, timers, DMA
arbiter, EDAC and parity generator and checker, interrupt control-
ler and UART making the chip suitable for embedded space appli-
cations. The processor runs at clock frequency of 20 MHz.

Since the ERC32 implements the SPARC V7 specification it has
characteristics of a RISC processor including simple instruction
set, constant instruction length, simple load/store data accesses to
memory and pipelined design.

A cross-compilation system, LECCS1, including GNU tools such as
gcc and gdb is available from Gaisler Research as well as the TSIM
simulator.

2.3 COCOS Overview
In this Master Thesis project we had access to documents describ-
ing the COCOS ASIC and its modules at different levels (User man-
uals, Functional descriptions and so on) as well as the VHDL2 code
for the circuit. In this subchapter we briefly describe the COCOS
ASIC with its modules.

The COCOS ASIC is a general CPU support device and I/O control-
ler that can interface with several processors including ERC32. The
modules integrated on the COCOS ASIC provide a number of CPU
support functions such as watchdog and interrupt controller as well
as interfaces to different bus types such as MIL-STD-1553, PCI and
SpaceWire. The COCOS ASIC has an interface (MEM I/F in Figure
2.2) to optional local buffer memory (bulk memory). The block dia-
gram of the COCOS ASIC is shown in Figure 2.2.

The COCOS ASIC allows the processor to set up different transfers
on I/O channels connected to the COCOS, such as reading sensor
measurements or receiving data from a payload instrument, and let
the COCOS handle the actual transfer. The processor can proceed
with another tasks while the COCOS complete the transfer.

1. Abbrevation for LEON/ERC32 Cross Compilation System
2. Abbreviation for Very high speed integrated circuit Hardware Description Language

High level description of an ASIC implementing CPU support and I/O control

Prerequisites Page 5

All of the COCOS modules registers as well as the bulk memory
and PCI address space can be mapped into the ERC32 I/O memory
area providing the ERC32 applications with easy access to modules
configuration registers and bulk memory.

Figure 2.2: COCOS ASIC block diagram

The following modules are integrated on the COCOS ASIC:

• Processor Interface
The COCOS processor interface handles the communication between
the COCOS ASIC and the ERC32 processor.

• Parallel Internal Bus Master
The Parallel Internal Bus Master handles the internal bus of the
COCOS ASIC and has an interface to optional external bulk memory.

• Interrupt Controller
The Interrupt Controller is used to increase the number of available
interrupts to the processor.

• Alarm Signal Generator
The alarm signal generator generates maskable alarm signals for inter-
nal and external errors.

External communication

Sup1553

Interrupt Ctrl

MEM I/F

PCI Interface

Alarm
Signal
Gen

Memory
Copy Ctrl

1553 Interface
x 3

Processor
Interface

DMA
Ctrl PCI

Arbiter

Parallel Internal
Bus Master

Memory
Scrubber

SPACE
WIRE x 6

UART x 3

LICE Watchdog

MAD

PWR
Interface x 3

OBDH

PWT
Interface x 3

TAP
MASTER

OBT

Obc93

COCOS internal bus

High level description of an ASIC implementing CPU support and I/O control

Page 6 Prerequisites

• MIL-STD-1553B Interface
The MIL-STD-1553B Interface supports MIL-STD-1553B bus stand-
ard for serial communication on a multiplexed bus. Three 1553 inter-
faces are included on the COCOS ASIC.

• Packet Wire Interface (PWR and PWT)
The Packet Wire Interface supports high speed, one direction point-to-
point serial communication. Three Packet Wire receive (PWR) inter-
faces and three Packet Wire transmit (PWT) interfaces are included on
the COCOS ASIC.

• OBDH
The OBDH module implements an interface to the OBDH (On-Board
Data Handling) bus with OBDH bus handler.

• MAD
No information available.

• Watchdog
The watchdog supervises the CPU and the software. It has to be
refreshed within a given time interval, otherwise it will expire and trig-
ger an alarm.

• PCI Interface
The PCI interface is able to function either as a PCI bus master or as a
PCI bus target. It can also act as system controller on the bus, arbitrat-
ing external requests.

• On Board Time (OBT)
The OBT module provides reference time in a system. The OBT mod-
ule can synchronize to external reference time or provide master refer-
ence time to other units.

• LICE
The LICE module provides interface to LICE probe used for debug-
ging purposes.

• Tap Master
Test Access Point (TAP) Master provides interface to devices with Test
Access Point according to JTAG standard.

• SpaceWire
The SpaceWire module is used to send and receive data packets over
SpaceWire link.

• UART
The UART supports the V24 standard. Three UARTs are included on
the COCOS ASIC.

• 1553 Support
The 1553 Support module provides support functions for common
1553 operations.

High level description of an ASIC implementing CPU support and I/O control

Prerequisites Page 7

• Memory Copy Controller
The Memory Copy Controller supports memory copy operations
between different locations in the memory and between different mem-
ory banks accessible by the COCOS.

All COCOS modules internal registers are memory mapped and
can be accessed in the ERC32 I/O mapped memory area. Two cen-
tral modules in the COCOS are the Processor Interface, which han-
dles communication between the ERC32 and the COCOS and the
Parallel Internal Bus Master, which handles internal data accesses
in the COCOS.

2.3.1 Processor Interface

The Processor interface (CPU_IF) handles the communication be-
tween the CPU and the COCOS. The Processor interface handles
data accesses from the CPU to the COCOS and performs DMA ac-
cesses from the COCOS to the CPU local memory. Interrupt rout-
ing from the COCOS modules to the CPU is also handled by the
processor interface.

The Processor interface maps the external requests received from
the ERC32 to COCOS internal memory map. The mapping function
is configurable and the mapping information is contained in the in-
ternal registers of Processor interface module.

2.3.2 Parallel Internal Bus Master

The Parallel Internal Bus Master (PIM) arbitrates the internal bus
of the COCOS ASIC. All internal read/write request are handled by
the PIM.

The internal memory map of the COCOS ASIC is configurable and
determined by setting up internal registers of the PIM.

The PIM receives requests from the COCOS modules and arbi-
trates the modules DMA channels allowing one module at time to
access a register or a memory location.

The module also implements interface to optional Bulk memory
used as local buffer memory during I/O transfers.

2.3.3 M1553 Modules

The MIL-STD-1553B standard and the M1553 module are
described in this section.

MIL-STD-1553B

MIL-STD-1553B is U.S. Department of Defence standard for mul-
tiplexed serial data bus communication mainly used in aeroplane
and space systems. The communication takes place on a single
transmission line using time division multiplexing. Communica-

High level description of an ASIC implementing CPU support and I/O control

Page 8 Prerequisites

tion between different units takes place at different moments in
time. Optional redundant transmission lines can be used in a 1553
system to make it more fault tolerant. A typical 1553 bus architec-
ture is shown in Figure 2.3.

Figure 2.3: A typical 1553 bus architecture

Three types of terminals take part in communication on a 1553 bus:

• Bus Controller (BC) initiates all data transfers on 1553 bus by issuing
commands to other units on the bus. There is only one Bus Controller
on a 1553 bus.

• Remote Terminal (RT) responds to commands from the Bus Controller.
Remote Terminals are typically devices gathering information from
sensors.

• Bus Monitor (BM) records the information on the bus and does not
actively take part in the communication.

All communication on the 1553 bus is initiated by the Bus Control-
ler that sends a receive or transmit command optionally followed by
data words to one or more Remote Terminals. A response from a Re-
mote Terminal consists of a status word followed by optional data
words.

In Figure 2.4 a typical 1553 message format is shown. BC sends a
transmit command to a RT requesting a number of data words from
the RT. As a response to the transmit command issued by the BC,
the RT sends a status word followed by the requested data words.
In this case the data flow is directed from RT to BC since the actual
data is transferred from RT to BC.

Figure 2.4: A typical 1553 message format

BUS
CONTROLLER

REMOTE
TERMINAL

SUBSYSTEMS

BUS
MONITOR

OPTIONAL

REDUDANT
CABLES

1553 BUS
CABLE

Transmit Data
Command

Data 1 Data NStatus

High level description of an ASIC implementing CPU support and I/O control

Prerequisites Page 9

The format of a command word, status word and data word is
shown in Figure 2.5. The command word consists of 16 bits divided
into four fields:

• Remote Terminal Address is used to identify a Remote Terminal to
which a command is transmitted. Each RT in a system is assigned a
unique RT address.

• T/R bit indicates if a command is a transmit or receive command.

• Subaddress/Mode field identifies a subsystem or a subfunction in a
Remote Terminal. Subaddresses 0 and 31 are reserved for special
Mode Code commands.

• Data Word Count / Mode Code field contains a number of data words
associated with a command or in case of Mode Code command this
field contains a Mode Code instructing a RT to perform special opera-
tion such as reset or synchronize.

Status word contains the address of the Remote Terminal sending
the status word and bits used to convey RT status information to
BC, indicate an error in transfer or request service. All responses
from a RT begin with a status word.

Data word is 16 bits long and contains the actual information that
is transferred from the RTs to the BC. The MIL-STD-1553B stand-
ard does not describe the contents of a data word.

Figure 2.5: Command, Status and Data word

Different message types involving a BC and a single RT are shown
in Figure 2.6. A BC to RT message type indicates the transfer
where the data flow is from a BC to a RT. The BC issues a receive
command followed by data words to a RT. The RT receives the com-
mand words and the data words and responses with a status word.
RT to BC message type is described previously. Mode Code messag-
es are also shown in Figure 2.6 and can be of either transmit or re-
ceive type with optional data word associated with the command or
the response.

Remote Terminal
Address

Command Word

T/R

RTAddr(4:0) TRN SubAddrMode(4:0) DataWCMCode(4:0)

Subaddress / Mode Data Word Count /
Mode Code

Remote Terminal
Address

Status Word ErrRTAddr(4:0)

M
es

sa
ge

 E
rr

or

Inst SRQ BCR Bsy SubSDBus Term

In
st

ru
m

en
ta

tio
n

S
er

vi
ce

 R
eq

ue
st

Reserved

B
ro

ad
ca

st
 C

om
m

an
d

R
ec

ei
ve

d

B
us

y

S
ub

sy
st

em
 F

la
g

D
yn

am
ic

 B
us

 C
on

tr
ol

A
cc

ep
ta

nc
e

T
er

m
in

al
 F

la
g

Data

Data Word Data(15:0)

High level description of an ASIC implementing CPU support and I/O control

Page 10 Prerequisites

Figure 2.6: Different 1553 message types involving
a BC and a single RT

Two Remote terminals can also exchange information. This type of
1553 transfer is initiated by the BC as well as all other data trans-
fers on a 1553 bus. The BC sends two commands, a receive com-
mand to the RT that is to receive data and a transmit command to
the RT that is to send the data. After the two commands are issued
the actual data is transferred. The sending RT sends a status word
followed by data words. The receiving RT receives this information
and sends a status word as shown in Figure 2.7.

Figure 2.7: RT to RT message format

Broadcast messages are similar to the previously described mes-
sage type except that all Remote Terminals recieve the command
and optional data words. A broadcast message is recognized by Re-
mote Terminal Address field being set to 31. Different types of
broadcast messages are shown in Figure 2.8.

Figure 2.8: Broadcast message formats

M1553 module

The COCOS ASIC implement the module three times to enable com-
munication on multiple M1553 busses. Each M1553 module can be
configured to function as either Bus Controller or Remote Termi-
nal, at the same time as they also functions as Bus Monitor.

Receive Data
Command Data 1 Data N Status

Transmit Data
Command Data 1 Data NStatus

Transmit Mode
Command

Status

Receive Mode
Command

StatusData

Transmit Mode
Command Status Data

BC to RT

RT to BC

Mode Code
No data word

Mode Code
BC to RT data

Mode Code
RT to BC data

Receive Data
Command Data 1 Data NStatusRT to RT Transmit Data

Command Status

Receive Data
Command Data 1 Data N

Receive Data

Command
Data 1 Data NStatus

Transmit Data

Command

Transmit Mode
Command

Receive Mode
Command

Data

RT to RT

Mode Code
No data word

Mode Code
BC to RT data

BC to RT

High level description of an ASIC implementing CPU support and I/O control

Prerequisites Page 11

When configured as Bus Controller the M1553 module is used to
schedule the output of commands on the 1553 bus, handle the re-
sponses from RTs and handle different types of errors on the 1553
bus. A set of memory mapped registers and special data structures
are used to determine the communication pattern on the 1553 bus.

Send List is a data structure used to handle the output of com-
mands and handling of responses from RTs. For each message on
the 1553 bus there is an element in a Send List containing informa-
tion on when the command should be sent, a pointer to a memory
location where the command block is stored and a pointer to a mem-
ory location where the response block is written. The command
block contains 1553 command and optional data words to be sent on
the 1553 bus while the response block contains the status word and
optional data words received from a RT as well as status informa-
tion about the message transfer. A Send List is shown in Figure 2.9.

Figure 2.9: Send List

When enabled, the Bus Controller sends commands on the 1553
bus and stores the responses from RTs according to the information
in the Send List. No interaction from the processor is required dur-
ing normal operation. BC can be configured to raise interrupt to the
processor on a number of events such as end of Send List, different
kinds of errors on 1553 bus and so on.

In this Master Thesis we focused on Bus Controller functionality of
the M1553 Module. Functionality of the M1553 module when con-
figured as Remote Terminal or Bus Monitor was not part of our
simulation.

2.3.4 Alarm Signal Generator

The Alarm Signal Generator (ASG) generates external signals
when other modules get into a state where an alarm shall be assert-
ed/deasserted. When the ASGs interrupt register is unmasked an
interrupt is asserted upon alarm assertions.

Command
Block

Response
Block

Send List
Block 0

Send List
Block 1

Send List
Block N

1553 Command Info

Command Block Pointer

Response Block Pointer

High level description of an ASIC implementing CPU support and I/O control

Page 12 Prerequisites

2.3.5 Watchdog

The purpose of the watchdog (WD) is to supervise the CPU and the
software or an external critical application. The watchdog requires
a refresh watchdog command periodically within a given time win-
dow, otherwise the watchdog will expire. When the watchdog ex-
pires an interrupt will be issued, and the Alarm Signal Generator
will assert the WDAlarm signal.

The refresh watchdog command can be given by either writing a
specific register or by asserting the external WdRefresh signal.

A separate clock, WdClk drives the watchdog, to make sure that it
expires even if the system clock is lost.

2.4 TSIM
TSIM is a generic SPARC architecture simulator capable of emu-
lating ERC32 based computer systems. TSIM provides accurate
and cycle-true emulation of the ERC32 processor.

2.4.1 TSIM Core

TSIM is capable of simulating ERC32 processor with its on-chip pe-
ripherals and a configurable amount of external RAM and/or ROM.
TSIM provides a number of functions to simulate ERC32 applica-
tions including commands to examine and update processor memo-
ry, insert breakpoints and trace execution of an application.

TSIM can also be attached to gdb acting a remote gdb1 target. Ap-
plications are loaded and debugged through gdb or a gdb front-end
product such as ddd2 providing graphical user interface.

2.4.2 TSIM I/O Modules

Loadable modules are used by TSIM to simulate I/O devices. A
loadable I/O module is dynamically linked by TSIM when it is start-
ed and handles the simulation of the I/O device.

The I/O module contains code and data structures used for the sim-
ulation of the I/O device. TSIM does not impose any restrictions on
how the I/O module should be implemented except that it shall ex-
port a number of functions to simulate the interaction between the
processor and the I/O device. These functions define the interface
exported by the I/O module and include functions, which TSIM
calls to initiate the I/O module or perform an access to the I/O mem-
ory area. When TSIM calls these functions the I/O module performs
necessary actions to perform the simulation of the I/O device such
as updating its internal data structures and its internal state.

1. gdb - GNU project debugger, http://www.gnu.org/software/gdb/
2. ddd - Data Display Debugger, http://www.gnu.org/software/ddd/

High level description of an ASIC implementing CPU support and I/O control

Prerequisites Page 13

The interaction between the I/O module and TSIM primarily takes
place when TSIM executes a load or store instruction. In real sys-
tem the processor requests read/write access to the I/O device on
the external bus connecting the processor with external devices.
The external devices, on the other hand, can request access to the
processor local memory and assert interrupt signals. TSIM pro-
vides interface to simulate the interaction between the processor
and the I/O device. This interface consists of structures containing
pointers to functions exported by either the I/O module or TSIM.
Each function simulates an interaction between the processor and
the I/O module. Typical interactions are accesses to I/O memory ar-
eas, asserting interrupt signals and requesting service from the
TSIM simulation engine.

TSIM provides an interface, which the I/O module can use to get
services from the TSIM internal simulation engine. The I/O module
can get current simulation time or schedule an event to be executed
in the future.

Interface to TSIM

The interface between TSIM and the I/O module is shown in Figure
2.10. The interface consists of the following structures:

• iosystem consists of functions that simulate the I/O device. The I/O
module exports these functions.

• ioif consists of functions providing the interface to the simulated
processor. This interface allows the simulated I/O device to assert
interrupt signals and perform DMA to the processor local memory.

• simif provides access to the TSIM internal simulation engine.

Figure 2.10: Interface between TSIM and the I/O module

TSIM and the I/O module interact through the described interface
on events such as:

• Special events, such as simulator start-up, simulator exit, processor
reset or when user gives a command to the I/O module at TSIM com-
mand line.

• Read/write accesses to ERC32s I/O area. When the processor executes
a load/store instruction addressed to the I/O area the control is trans-
ferred to the I/O module.

• DMA access from the I/O device to the processor local memory or
assertion of interrupt signal to the processor.

TSIM

ioif

iosystem

simif

exported interface

call to function in
exported interface I/O module

High level description of an ASIC implementing CPU support and I/O control

Page 14 Prerequisites

• Events in the event queue. The I/O module has access to the TSIM
event queue, which can be used by the module to schedule the events in
the future by putting them in the event queue. When the event expires
the control is transferred to the I/O module allowing it to take care of
the event.

The iosystem structure

The iosystem structure exported by the I/O module is shown in Fig-
ure 2.11. It contains pointers to functions called by TSIM on simu-
lator start-up, exit and reset (io_init(), io_exit() and
io_reset()) allowing the I/O module to perform appropriate ac-
tions, such as initializing internal data structures, on these events.

The functions io_read() and io_write() are called when the proc-
essor performs an access to the I/O mapped memory area. The addr

parameter contains the address for the I/O access and in case of
read access (io_read()) the data is supplied in *data. In case of
write access (io_write()) the data is returned in *data. Number of
waitstates for the access is returned in *ws.

The function get_io_ptr() is used by TSIM to get the direct access
to the simulated memory in the I/O module.

The function command() decodes the command given on the TSIM
command line but not recognized by TSIM. This feature gives user
the possibility to implement additional commands.

The SIGIO signal can be handled by the I/O module using the si-

gio() function (not used in our simulation).

The functions save() and restore() are called when the save or re-
store commands are given to TSIM giving the module possibility to
save or restore its internal state and data structures. In this way a
complete simulation state of both TSIM and the I/O module can be
saved and restored.

struck io_subsystem {
void (*io_init)(); /* called once on start-up */
void (*io_exit)(); /* called once on exit */
void (*io_reset)(); /* called on processor reset */
void (*io_restart)(); /* called on simulator restart */
int (*io_read)(unsigned int addr, int *data, int *ws);

/* called on read access in I/O area */
int (*io_write)(unsigned int addr, int *data, int *ws, int size);

/* called on write access in I/O area */
char *(*get_io_ptr)(unsigned int addr, int size);

/* direct access to sim. memory */
int (*command)(char *cmd); /* I/O specific commands */
void (*sigio)(); /* called when SIGIO occurs */
void (*save)(char *fname); /* save state */
void (*restore)(char *fname); /* restore state */
};
struct io_subsystem *iosystem;

Figure 2.11: Structure provided by the simulated I/O device

High level description of an ASIC implementing CPU support and I/O control

Prerequisites Page 15

The ioif structure

The ioif structure exported by TSIM is shown in Figure 2.12. It
contains pointers to functions used to assert interrupt signals
(set_irq()) and to perform direct read or write access to processor
local memory (dma_read() and dma_write()).

struct io_interface {
void (*set_irq)(uint32 irq, uint32 level);

/* generate external interrupt */
int (*dma_read)(uint32 addr, uint32 *data, uint32 num);

/* read access to CPU local memory */
int (*dma_write)(uint32 addr, uint32 *data, uint32 num);

/* write access to CPU local memory */
};
extern struct io_interface ioif;

Figure 2.12: Structure provided by TSIM

The simif structure

The simif structure exported by TSIM providing the access to the
TSIM simulation engine is shown in Figure 2.13.

TSIM startup options can be accessed in sim_options.

The function simtime() gives current simulation time.

The function event() inserts a function (cfunc()) to be executed at
current simulation time + offset in the TSIM internal event queue.
In this way the future events are scheduled.

Processor interrupt level can be monitored using irl.

A function (event) in the event queue is removed from the queue by
calling stop_event().

Calling sys_reset() performs system reset.

The function sim_stop() stops the simulation.
struct sim_interface {
struct sim_options *options; /* TSIM command-line options */
uint64 (*simtime)(); /* current simulator time */
void (*event)(void (*cfunc)(), uint32 arg, uint64 offset);

/* insert an event in the event queue */
void (*stop_event)(void (*cfunc)());

/* remove event from the event queue */
uint32 *irl; /* interrupt request level */
void (*sys_reset)(); /* reset processor */
void (*sim_stop)(); /* stop simulation */
};
extern struct sim_interface simif;

Figure 2.13: Structure providing the access to the
TSIM simulation engine

The interface described above defines the interaction between the
I/O module and TSIM. It imposes however no restrictions on other
interfaces that can be implemented in the I/O module such as I/O
module specific user interface that does not utilize the provided in-
terface for optional command decoding through the TSIM user in-

High level description of an ASIC implementing CPU support and I/O control

Page 16 Prerequisites

terface (command() function in iosystem interface). The module can
use system calls to the operating system on the host platform to re-
quest services such as file handling or opening a terminal window
for input/output from the user.

Requirements Page 17

High level description of an ASIC implementing CPU support and I/O control

3 Requirements
These are the requirements we concluded to base our design
on. They are in line with our detailed studies and customer
feedback.

3.1 User feed-back
As software developers we had a golden starting point. Our future
users of the application were situated at the same office. This was
something we definitely had use for when concluding the require-
ments.

When a draft for the design was completed in the beginning of
March after approximately five weeks work, we held a presentation
for the user group. During this meeting we discussed the future im-
plementation. We had earlier sent out a specification to all partici-
pants. During this session we got very positive response on the
design we had chosen. This made us confident that the draft was
worth developing further.

When the implementation had come far enough we also provided
the software for evaluation among the employees and got feedback
this way during the process.

3.2 Performance
The only speed performance criteria we could conclude from speak-
ing to the users was that the simulation should be fast. We later es-
tablished that a suitable performance was close-to real time.

Another aspect we had to consider was how detailed our simulation
should be. This has much effect on the speed performance. We dis-
covered that normal use of the COCOS would not claim high re-
quirements on the timing. For instance it is not common to create a
certain data structure. Then enable it to be transmitted over a se-

High level description of an ASIC implementing CPU support and I/O control

Page 18 Requirements

rial link to a remote system and as the next instruction make
changes to the same structure. Therefore we could decide that tim-
ing was not too critical. It was however, necessary to be able to pro-
voke timing errors in some way.

3.3 Modularity
Since our Master’s thesis hardly would suffice for constructing the
entire simulator, it was very important that the design was modu-
lar. This would enable future expansion of the simulators function-
ality.

One user expressed misgivings about the future performance, as
the simulator would expand in complexity. The modularity would,
if the prophesy came true, give the option of disabling certain parts
of the simulator to enhance performance.

3.4 Usability
During the presentation to the department we had little feedback
on this issue. We were given rather free hands under the premise
to make it user friendly. Although, the number one priority was to
fulfil the scope.

Some ideas came up, though. They wanted logging capabilities of
the different external buses and an easy dump command of COCOS
registers. They also wanted warnings if their programs did unex-
pected processing. This could be reading of a write only register,
which always returns the well defined value 0x0 regardless of its
contents, or putting the COCOS in an undefined state. This would
yield valuable information not available when running on the tar-
get hardware.

Implementation Page 19

High level description of an ASIC implementing CPU support and I/O control

4 Implementation

In this chapter we present the implementation details of the
COCOS I/O module.

4.1 Simulator Overview
The I/O module simulating the COCOS ASIC is implemented in C
programming language and compiled as a loadable object module.
It is attached to the TSIM by dynamically linking the I/O module
with the TSIM at the startup of the TSIM.

The user interacts with the simulator (TSIM + I/O module) using
the standard TSIM command line user interface and by writing
COCOS I/O module specific stimuli files. The output from the sim-
ulator is presented in the TSIM command window or written to a
log file.

The module interacts with the TSIM through the interface de-
scribed in [2.4.2] simulating the interaction between the ERC32
processor and an external I/O device.

An overview of the simulator is shown in Figure 4.1.

Figure 4.1: Simulator overview

TSIM

 Stimuli
file

Log

file
COCOS I/O Module

Command line user interface

ERC32 / external

I/O device interface

High level description of an ASIC implementing CPU support and I/O control

Page 20 Implementation

4.2 COCOS I/O Module

4.2.1 Design Choice

The goal of this Master’s thesis was to make simulation of the CO-
COS ASIC meeting the requirements for modularity, performance
and usability as described in chapter 3: ”Requirements”. To meet
the modularity requirements in section [3.3], we identified the ways
in which COCOS modules interact with each other and defined a
suitable software interface as abstraction for this interaction. We
found that the appropriate submodule boundaries for the imple-
mentation of the I/O module where similar to those of the VHDL de-
sign. Each COCOS module is implemented as a separate software
module communicating with other modules through an interface
simulating the data accesses on the COCOS internal bus.

Since we had concluded that there was no need for a true emulation
of the target hardware (see section [3.2]), but rather an adequate
simulation we decided for a functional high-level representation.
This has many advantages. An idea of cycle-true emulation was
therefore abandoned. Not only is it faster to develop a high-level
implementation but it also has a greater chance to fulfil the re-
quirement of a close-to-real time performance (see section [3.2]) on
the host system.

Figure 4.2: Software modules diagram

Sup1553

Interrupt Ctrl

PCI Interface

Alarm
Signal
Gen

Memory
Copy Ctrl

1553 Interface
x 3

Processor
Interface

DMA
Ctrl

SPACE
WIRE x 6

UART x 3

LICE Watchdog

MAD

PWR
Interface x 3

OBDH

PWT
Interface x 3

TAP
MASTER

OBT

Obc93

Pi Master

Bulk MEM

Register access

DMA request External communication

Direct address access Module Unimplemented module

Bulk Mem Read / Write access

High level description of an ASIC implementing CPU support and I/O control

Implementation Page 21

4.2.2 Modular Structure of the COCOS I/O Module

Two modules, Processor Interface (CPU_IF) and Parallel Internal
Master (PIM), play a central role since they are involved in all ac-
cesses to the COCOS. Figure 4.2 shows the model we used for com-
munication on the COCOS internal bus. PIM is involved in all
internal data accesses and can access a module by performing Reg-
ister access or direct address access. A module can make a DMA re-
quest to PIM to access other modules address space.

 Figure 4.3 shows the modular structure of the COCOS I/O module
and the interface between the submodules. The interface to the
TSIM is also shown. Each module is represented as a box with a list
of functions it exports. Calls to functions exported by other modules
are marked by arrows pointing from the calling module to the mod-
ule that exports the function.

External functions are marked by arrows pointing from the calling
module to the module that exports the functions.

The core of the COCOS I/O module are CPU_IF and PIM submod-
ules that all submodules interface.

Figure 4.3: Modular structure of the COCOS I/O module

The Processor Interface module handles accesses form the CPU
which TSIM simulates by calling functions io_write() and
io_read(). These two functions are exported by the COCOS module
as indicated in Figure 4.3. Both functions are called with ERC32
address to be accessed and in case of io_write() with data to be
written. Return values are the number of waitstates for the access
and in case of io_read() the data is returned. The Processor Inter-
face calls functions DmaReadReq() and DmaWriteReq() exported by
Parallel Internal Master module to perform the requested access.
The Processor Interface also handles the assertion (and deasser-

dma_read();
dma_write();
set_irq();

TSIM

COCOS

io_read();
io_write();

CPU_IF

CpuIf_IORead();
CpuIf_IOWrite();
CpuIf_RegRead();
CpuIf_RegWrite();
CpuIf_AssertInterrupt();
CpuIf_DeassertInterrupt();
CpuIf_ExtRead();
CpuIf_ExtWrite();

DmaReadReq();
DmaWriteReq();

PIM

M1553_RegRead();
M1553_RegWrite();

M1553

PI module

CpuIf_IORead();
CpuIf_IOWrite();

CpuIf_RegRead();
CpuIf_RegWrite();
CpuIf_AssertInterrupt();
CpuIf_DeassertInterrupt();
CpuIf_ExtRead();

CpuIf_ExtWrite();

io_read();
io_write();

dma_read();

dma_write();
set_irq();

DmaReadReq();
DmaWriteReq();

PImodule_RegRead();
PImodule_RegWrite();

M1553_RegRead();

M1553_RegWrite();

CpuIf_Assert
Interruppt();
CpuIf_Deassert
Interrupt();

Bank_Read();
Bank_Write();

Bulk MEM Bank_Read();
Bank_Write();

High level description of an ASIC implementing CPU support and I/O control

Page 22 Implementation

tion) of interrupt signals to the ERC32 as well as DMA to the proc-
essor local memory. The Processor Interface software module
exports the functions CpuIf_AssertInterrupt(),
CpuIf_DeassertInterrupt(), CpuIf_ExtRead() and CpuIf_ExtWrite()

for this tasks.

The Parallel Internal Bus Master (PIM) module arbitrates the in-
ternal bus of the COCOS ASIC. The PIM software module exports
two functions for these tasks, DmaReadReq() and DmaWriteReq() al-
lowing other COCOS modules to perform internal accesses to other
modules or the bulk memory.

Internal registers of the implemented modules are implemented as
a part of the corresponding software module. In order to allow the
Parallel Internal Bus Master to access these registers all software
modules export functions for this purpose (<module
name>_RegRead() and <module name>_RegWrite()). Modules that im-
plement direct address access must also export functions providing
access to the modules local address space (<module name>_ExtRead()
and <module name>_ExtWrite()).

4.2.3 Module Specific User Interface

A part of I/O module is an interface used to log messages from the
module. Purpose of this interface is to receive messages from differ-
ent submodules in the I/O module and to present them to the user.
Using the I/O module specific command on the TSIM command line
the user can decide how the messages are presented, e.g. setting a
low debugging level for the I/O module will filter most of the mes-
sages coming from the I/O module. The interface exports the follow-
ing function:
void CLog(Module_T Module, CLog_T LogStatus, int LogLevel, char *str, ...);

Each message consists of a string and is tagged with module name,
logging status (info, warning or error) and logging priority. The tags
are used by the function to decide whether the message should be
presented to the user or not.

Since TSIM does not impose any restrictions on how the I/O module
should be implemented except for the interface between the module
and TSIM, the module can make use of OS services to implement
module specific user interfaces by directly making system calls to
the OS (e.g. the M1553 module reads a stimuli file describing the
traffic coming from other 1553 terminals on the simulated 1553
bus).

High level description of an ASIC implementing CPU support and I/O control

Implementation Page 23

4.3 COCOS I/O Submodules
In this chapter all implemented COCOS modules are
described.

4.3.1 General Implementation of a Submodule

The simulation of the COCOS I/O module and thus the submodules
are event-driven. The internal simulation engine of TSIM is used to
schedule events.

Initially events are generated by TSIM when it interacts with the
I/O module. On an event a submodule takes appropriate action, e.g.
updating its own data structures or generating output to the user,
or/and generates new events which can be either internal or exter-
nal. An external event is handled by other submodules while the in-
ternal event is handled by the submodule itself.

An external event is typically writing to the other modules internal
registers. Since the entire interaction between the modules is sim-
ulated through the software interface this kind of events are gener-
ated by calling the appropriate function in the external
submodule’s exported interface. E.g. if TSIM performs a write oper-
ation to the M1553 submodule internal register to enable it, a se-
ries of events is generated: the first event is generated by calling
the io_write() function which is part of the I/O modules interface
to the TSIM, then CpuIf_IOWrite() in CPU_IF is called followed by
call to DmaWriteReq() in the PIM submodule and finally PIM calls
M1553_RegWrite() to update M1553 submodules internal register.
The register update generates internal events that are handled by
the M1553 submodule itself.

In order to meet the modularity requirements and handle external-
ly generated events a submodule has to implement all of the func-
tions that are part of the software interface described in [4.2]. The
functions forming the modules interface become entry points to the
submodule simulation code as they are entered (executed) each
time an external event occurs.

Internally generated events are handled by the module itself and
are scheduled using the TSIM internal simulation engine (event()
function, see section [2.4.2]). Our implementation uses functions
representing state machines to schedule internal events. The pseu-
do code of such function is shown in Figure 4.4.

High level description of an ASIC implementing CPU support and I/O control

Page 24 Implementation

static void Sim()
{

static State_T state;

switch (state)
{
case Disabled:

... /* Perform simulation of current state */
state = Enabled; /* Next state */
simif.event(Sim, 0, Delay);/* Put new event in the event queue */
break;

case Enabled:
... /* Perform simulation of current state */
state = SendData;
simif.event(Sim, 0, Delay);
break;

case ReceiveData:
....

case SendData:
...

...
}

Figure 4.4: Function used to represent a state machine

Communication with other submodules in the I/O module is han-
dled through the interfaces to PIM and the CPU_IF (see Figure
4.3). To request data external data access, in the COCOS local ad-
dress space or ERC32 local memory) request the submodule makes
request to PIM by calling DmaReadReq() / DmaWriteReq(). An inter-
rupt is assert/deassert by making call to CpuIf_AssertInterrupt()

/ CpuIf_DeassertInterrupt(). The structure of a submodule is
shown in Figure 4.5.

Figure 4.5: Structure of a submodule

exported functions

CpuIf_AssertInterrupt()
CpuIf_DeassertInterrupt()

CPU_IF

DmaReadReq()
DmaWriteReq()

PIM

external events

TSIM
simulation

engine

internal events

generated

external events

<module name>_RegRead() <module name>_RegWrite()

<module name>_Sim()

Internal data structures and
simulation code

<module name>_RegRead() <module name>_RegWrite()

<module name>_ExtRead() <module name>_ExtWrite()

High level description of an ASIC implementing CPU support and I/O control

Implementation Page 25

4.3.2 COCOS Core Modules

The modules that are defined as parts of the COCOS core
are described in this section.

Parallel Internal Bus Master

All data accesses in the COCOS are arbitrated by the PIM. Config-
uration of the PIM’s internal registers determines the internal
memory map of the COCOS. When an access is requested PIM
maps the request to the appropriate module according to the CO-
COS internal memory map and takes some of following actions:

• Reads/writes a COCOS modules internal register. This is done by call-
ing modules <module name>_RegRead() and <module

name>_RegWrite() functions.

• Performs a read/write access to the Bulk Memory. The Bulk Memory
software module provides functions Bank_Read() and Bank_Write()

for this purpose.

• Performs a read/write access to the ERC32 local memory. The Proces-
sor Interface software module provides functions CpuIf_ExtRead()
and CpuIf_ExtWrite() for this purpose.

The arbitration algorithm that the PIM uses to resolve conflicts on
the bus is not simulated; instead all modules are given default ac-
cess time for accessing the bus. This value is the average case
number of clock cycle for getting control over the bus. The arbitra-
tion time can be changed by the user by giving a command on the
TSIM command line and in that way allow the user to simulate the
affect of other arbitration times such as worst case arbitration time.

Processor Interface

Main parts of the Processor Interface software module are:

• Memory mapping. The Processor Interface module is called by TSIM
from io_read() and io_write() functions in the iosystem structure
(see section [2.4.2]) to perform access in ERC32s I/O memory area.
The CPU_IF module maps this accesses to accesses in the COCOS
local memory map. Information on how ERC32 address space is
mapped on the COCOS address space is configurable and contained in
CPU_IF internal registers. In the software module this mapping is
implemented by matching requests from the ERC32 against informa-
tion in CPU_IF configuration registers.

High level description of an ASIC implementing CPU support and I/O control

Page 26 Implementation

• Interrupt forwarding. This module exports the functions
CpuIf_AssertInterrupt() and CpuIf_DeassertInterrupt()

which are called by a COCOS module to assert/deassert an internal
interrupt signals. A set of registers including interrupt mask register
and pending interrupt register are implemented. Internal interrupts are
routed to TSIM, if not masked in mask configuration registers, by call-
ing the functions TSIM provides for interrupt handling (see the ioif

structure in section [2.4.2]).

• DMA to ERC32 local memory. A request for an access in the ERC32s
local memory comes from the PIM and is handled by the CPU_IF by
calling functions exported by TSIM (see the ioif structure in section
[2.4.2]).

Bulk Memory

We have decided to include the Bulk memory in the COCOS core.
The reason is its own interface to PIM and therefore does not hold
the specific properties of the miscellaneous modules presented be-
low.

It may be written to in bytes (8 bits), half words (16 bits), words (32
bits) or double words (64 bits) but is only readable in words. Both
reading and writing can though be done through block request to
read/write multiple of the above types.

4.3.3 Miscellaneous Modules

These are the modules that are defined as submodules to the
COCOS core. These hold similar properties from a design
point of view and also communicate with a subset of a given
number of interfaces.

Alarm Signal Generator

The Alarm Signal Generator is the less complex module among
those we have implemented. The external alarm signals are imple-
mented as prints to <stdout> tagged ASG INFO. An assertion and
a deassertion by the WD module look respectively as in Figure 4.6.

ASG INFO External AsgWdAlarm signal asserted
ASG INFO External AsgWdAlarm signal deasserted

Figure 4.6: Alarm Signals

M1553

In M1553 software module the functionality of Bus Controller is
simulated. A Bus Controller acts a master on a 1553 bus initiating
all data transfers on bus. The Bus Master stores responses from a
Remote Terminal and status information on the data transfer
(transmission errors, invalid message formats and so on) in the
memory.

High level description of an ASIC implementing CPU support and I/O control

Implementation Page 27

Implementing the functionality of M1553 BC at function level al-
lowed us to make following simplifications compared to the actual
VHDL implementation of the BC module:

• Block transfers from/to memory (bulk memory or CPU local memory).
All data block accesses are requested and performed by a single call to
the PIM rather than performing several calls to read/write the block.
This simplification is possible because of the way in which the BC
module is used. The module is set up for data transmission by writing
Send List(s) in memory. When the module is enabled the user is not
expected to make changes to the Send List(s) until either the module
raises an interrupt or the user disables the module.

• Simplified state machine. The implementation of the functional behav-
iour of the BC module makes it possible to reduce the number of states
compared to the actual VHDL implementation. The state machine is
implemented as a function described in [4.3.1]. It is activated by writ-
ing a M1553 module register and thus enabling the BC. In following
states the BC gets the Send List information from the memory, outputs
the command, gets the response, handles eventual errors and gets the
next Send List. The software module calculates the time to perform
tasks in the states and delays itself before going to the next state.

• Bus traffic. The M1553 software module uses a high abstraction level
for bus traffic. Since the commands and optional data words to be out-
put on the 1553 bus by the BC are known when the transfer is initiated
(a structure containing the command(s) and data words is read as a
block) it is output during on clock cycle. In same manner the stimuli,
which are parsed at simulator start-up, can be directly analysed and
written to memory. The time for a complete message transfer is calcu-
lated and the module is delayed for this period of time.

Watchdog

The Watchdog is implemented with all its registers and the WD
clock is simulated through the COCOS specific command setclk
WD. Alarm assertion on expiration are serviced by the ASG mod-
ule. A small state machine implements its different states.

High level description of an ASIC implementing CPU support and I/O control

Page 28 Implementation

4.4 User Interfaces
The simulator is featured with several user interfaces. They
will all be presented in this subparagraph. To read about the
user interface of TSIM please refer to paragraph [2.4.1].

4.4.1 COCOS Specific TSIM Commands

The TSIM simulator supports the developer of I/O modules to sup-
ply commands at the TSIM prompt [2.4.2]. These can be prompted
just as if they were a part of the TSIM core. This feature has been
taken advantage of when implementing user settings control and
commands to retrieve status information.

Table 1: COCOS specific TSIM commands

NAME DESCRIPTION EXAMPLE

setclk

SYNOPSIS
setclk [type] [freq]

setclock sets the type to freq.
type can be either M1553Clk
or WdClk.
freq is (float) MHz:s.

setclk M1553Clk 20

default freq is equal to
ERC-32 clock frequency.

cdeb

SYNOPSIS
cdeb [level]

cdeb sets the COCOS debug
level.
level can be (int) 0 - 4.
0 = disabled and 4 = detailed

cdeb 3

default debug level is zero.

setstim

SYNOPSIS
setstim [file]

setstim sets the file where
stimuli data is fetched.
file must follow the grammar
stated in Appendix B.

setstim ../stim/stimfile.stim

default is undefined
regarding m1553 traffic.

bclogfile

SYNOPSIS
bclogfile [file]

bclogfile sets the output file
where m1553 bus traffic is
logged when a m1553 module
is acting as busmaster.

bclogfile ../stim/m5bus.out

default file is <stdout>

arbitdelay

SYNOPSIS
arbitdelay [module] [delay]

arbitdelay sets the arbitration
delay to use for a module
when simulating a DMA
request by the module.

arbitdelay M1553A 8

default delay is three
(estimated average delay)

page

SYNOPSIS
page [page no]

page prints a graphical repre-
sentation of the local address
map for page page no.
page no can be (int) 0 - 7.

page 0

dumpregs

SYNOPSIS
dumpregs [module]

dumpregs prints the contents
of all registers implemented
in module to <stdout>.

dumpregs M1553A

High level description of an ASIC implementing CPU support and I/O control

Implementation Page 29

It is recommended that a batch- or .tsimrc file is created for easier
execution of these and other standard TSIM commands [1].

The reserved names of different modules to use on the command
line are found in Table 2.

4.4.2 M1553 Environment Stimuli

The environment of the M1553 units is simulated by writing a stim-
uli file. The file must comply with a defined grammar in Appendix
B which represents responses (see section [2.3.3]) from RT-units on
the simulated M1553 buses. It is also possible to simulate transfer
errors. The grammar for simulation of M1553 units in bus control-
ler (BC) mode is also implemented. This supports full simulation of
the RT-mode M1553 units when these are implemented.

The stimuli file is parsed upon use of the COCOS specific TSIM
command setstim. The following example gives an idea of what a
simuli file should look like.

In this example the CPU board is communicating with a measuring
device. The communication is over MIL-STD-1553B and the CPU
board is acting as BC and the measuring device as RT. The measur-
ing device is sampling 32 bit data at 1kHz frequency. This data is
transmitted over M1553B to the CPU board every 5ms as a
M1553B message. The following stimuli simulate the RT units re-
sponses to the BC transmit commands.

Table 2: Reserved module names

Module Name

Alarm Signal Generator ASG

Processor Interface CPUIF

Parallel Internal Bus Master PIM

M1553A M1553A

M1553B M1553B

M1553C M1553C

Watchdog WD

High level description of an ASIC implementing CPU support and I/O control

Page 30 Implementation

...
M1553A

RT_Response:
1 0x0800 0x1fff 0xffa1 0x1fff 0xffa5 0x1fff 0xffaa 0x1fff 0xffb3
0x1fff 0xffa3 OK rt=5
1 0x0800 0x1fff 0xffa5 0x1fff 0xffa5 0x1fff 0xffab 0x1fff
0xffb3 0x1fff 0xff99 OK rt=5
1 0x0800 0x1fff 0xffa1 0x1fff 0xffa5 0x1fff 0xffaa 0x1fff
0xffb3 0x1fff 0xffa3 OK rt=5
1 0x0800 0x1fff 0xffa5 0x1fff 0xffa5 0x1fff 0xffab 0x1fff
0xffb3 0x1fff 0xff99 OK rt=5

SpaceWire5
...

• ‘M1553A’ indicates to the parser that the following stimuli are to be
associated with M1553A commands.

• ‘RT_Response:’ indicates to the parser that the following stimuli are
for response actions on Transmit, Receive and Mode commands to be
read in chronological order.

• ‘1’ is a repeat parameter. 1 states repeat once, 2 twice... and 0 forever.

• ‘0x0800’ is the status word replied stating that the transmit command
was detected, valid and that the RT unit address is 1 as stated in Figure
2.5. The status word is replied to all commands but, non-RT/RT Broad-
cast responses.

• The following ten 16 bit data words are representing the five 32 bit data
words per response.

• ‘OK’ is the status of the transmitted Response. Simulates the transfer
status detected by the BC unit being OK. Can also be typed in hex
M1553 syntax [3]. The equivalence for OK would be 0x0.

• ‘rt=5’ simulates the response time (5 bit times) detected by the BC
unit. Bit time is the M1553 name for the time period of the transmis-
sion frequency.

This example only contains responses to Transmit commands. Re-
sponses to Receive commands have the same syntax but never con-
tains data words. (i.e. ‘1 0x0800 OK rt=5’)

Stimuli File Parser

The parsing of the stimuli file is done using automatically generat-
ed lexical analyser produced with flex tool and parser produced us-
ing bison tool. Input to the flex tool is file (stim.lex) defining lexical
symbols of a stimuli file while the input to the bison is file
(stim.yacc) defining the grammar of a stimuli file. The file
(stim_actions.c) contains functions (semantic actions) used by pars-
er to produce the output of the parsing described below (these are
typically functions building up data structures when the parser
matches a rule defined by the grammar).

High level description of an ASIC implementing CPU support and I/O control

Implementation Page 31

The result of the parsing is a structure containing lists with BC
stimuli (BC commands) or/and RT stimuli (responses from RTs) for
each M1553 module. Each element in a list corresponds to a line in
a stimuli file which can either be a BC command or a response from
a RT.

Parsing of a stimuli file of similar structure to the stimuli file used
in example above would result in a structure shown in Figure 4.7.
The stimuli file contains RT responses to M1553A module and does
not contain any stimuli for M1553B, M1553C or the BC commands
to M1553A unit. RT stimuli (responses from RT units) are put in a
list where each element corresponds to the number of times the
message is repeated and the response from the RT unit containing
status word, optional data words, transfer status and response time
information.

Figure 4.7: Output from the stimuli file parser

A description of the stimuli file syntax can be found in Appendix B.

4.4.3 M1553 Environment Log

A log feature is implemented to present a file containing informa-
tion about the M1553 bus activity. This file can be analysed by the
user after a program has ended or been stopped in the simulator.

A typical log might look something like this
...
M1553B:@ 1075234862 bit cycles | 0883 0001 0002 0003 <-> 0800

M1553B:@ 1096811884 bit cycles | 08c8 0011 0012 0013 0014 0015
0016 0017 0018 <-> 0800
M1553A:@ 1675234862 bit cycles | 0883 0001 0002 0003 <-> 0800
...

M1553A

M1553B

M1553C

RT

BC

RT

BC

RT

BC

repeat

status word

transfer
status

response
time

data word 1

data word n

repeat

status word

transfer
status

response
time

Response from RT

(no data words)

data word 2

High level description of an ASIC implementing CPU support and I/O control

Page 32 Implementation

It displays the name of the bus master and the bit cycle in which
the first bit of the message was sent. It is followed by the half words
that have appeared on the simulated bus in chronological order. A
bit cycle is the M1553 name for a specific count of bit times since
the start of main() program execution.

4.4.4 COCOS Debug Feature

Using the enhanced TSIM command cdeb invokes an extensive log-
ging feature. By setting the cdeb level a selection of these logs are
written to <stdout>.

A typical log in debug level three, which is quite detailed, might
look something like this.
...
INFO M1553A:Sending 1553 message from BC Command block on addr
0x04000100
INFO M1553A:Getting RT response form 1553 bus (stimuli)
INFO M1553A:Writing BC response block on addr=0x04000200
INFO M1553A:Calculating 1553 bit times
INFO M1553A:New 1553 message logged onto bclogfile
INFO M1553A:Getting SL block 1 on address 0x0400000c
INFO M1553A:Sending 1553 message from BC Command block on addr
0x04001100
INFO M1553A:Getting RT response form 1553 bus (stimuli)
INFO M1553A:Writing BC response block on addr=0x04001200
INFO M1553A:Calculating 1553 bit times
INFO M1553A:New 1553 message logged onto bclogfile
INFO M1553A:Getting SL block 2 on address 0x04000018
WARNING M1553A:SL End interrupt masked
...

4.4.5 The Local Address Space Visualizer

Setting up the local address space is by most users felt to be the
most risky set-up to do in the COCOS. Therefore a local address
map visualizer has been implemented to display each of the eight
address spaces that can be reconfigured. These are called pages. All
registers concerning memory mapping are analysed to render the
graphical representation. The default configuration of Page 0 is
shown below.

High level description of an ASIC implementing CPU support and I/O control

Implementation Page 33

tsim> page 0

___________COCOS Page 0 Address space

0x00000000 |_________________________|
___________|__COCOS Register memory__|
___________|_________________________|
0x00010000 |_________________________|
___________|______CPUIf memory_______|
___________|_________________________|
0x04000000 |_________________________|
___________|_____Bank 0 memory_______|
___________|_________________________|
0x08000000 |_________________________|
___________|_____Bank 1 memory_______|
___________|_________________________|
0x0c000000 |_________________________|
___________|_____Bank 2 memory_______|
___________|_________________________|
0x0e000000 |_________________________|
___________|_____Bank 3 memory_______|
0x0fffffff |_________________________|
___________|_________________________|
___________|_______Not Used__________|
___________|_________________________|
0x20000000 |_________________________|
___________|PCI Direct Access memory_|
0x7fffffff |_________________________|
___________|_________________________|
___________|_______Not Used__________|
0xffffffff |_________________________|
tsim>

High level description of an ASIC implementing CPU support and I/O control

Page 34 Implementation

Conclusion Page 35

High level description of an ASIC implementing CPU support and I/O control

5 Conclusion

In this chapter the project is evaluated. An advised plan for
the continuation of the project is also presented.

5.1 Experiences
The project has taught us that our thorough preparations before we
started implementing the application were indeed a virtue. This
was partially a new experience since the project was of a much
greater extent than those of earlier projects at Chalmers1. These
were of less than one fourth the size. Now we had really looked into
the prerequisites and created a plan for the entire project. This we
believe has much credit for the success of this project.

We also learnt how to work with conflicting requirements. The re-
quirements forced us into several trade-off decisions. We discussed
a large number of designs during the process of work.

5.2 Results
The results, which are a reflection of our processing of the
requirements, are presented in correspondence with chapter
[3] as performance, modularity, user interface and
usability.

5.2.1 Performance

In order to estimate how the COCOS I/O module affects the per-
formance of TSIM we used profiling tools (Solaris built-in profiling
possibilities and gprof2) on TSIM while running a typical ERC32
application using a M1553 module in the COCOS as a Bus Control-
ler. The analysis showed that approximately 5-10 % of time was

1. Chalmers University of Technology, Gothenburg, Sweden
2. GNU profiler (http://www.gnu.org)

High level description of an ASIC implementing CPU support and I/O control

Page 36 Conclusion

spent executing I/O module code. The execution times for a single
function in the I/O module were in general evenly distributed and
most of the functions do not need to be optimized to improve the
performance significantly. The functions used for logging and pre-
senting debug information to the user had relatively long execution
times and are suitable for optimization to get even better perform-
ance for the I/O module.

5.2.2 Modularity

A large amount of work was spent designing the appropriate mod-
ule boundaries and the interface for interaction between the mod-
ules. This resulted in the I/O module core with the interface
defining the core interaction with other submodules. This allows fu-
ture users to easily attach additional submodules by following the
design rules in [4.3.1] and Appendix A.

5.2.3 User Interface

A number of COCOS specific commands can be given at the TSIM
prompt. The commands are described in section [4.4.1] and allow
the user to configure the COCOS I/O module, load stimuli files, ex-
tract debugging information or dump COCOS internal registers.

An interface for presenting the debugging information to the user
is implemented and described in section [4.2.3].

5.2.4 Usability

When implementing the simulator we were faced with a specific de-
sign problem. Since the simulation was to be done in a functional
level we had to decide what should be tested. We had already con-
cluded in section [3.2] that timing not was critical. During the eval-
uation period we could conclude further more that our design
caught typical errors such as memory access errors, errors while
setting up configuration registers and logical errors.

5.2.5 Conclusion

This design has the following advantages.

• Small effect on TSIM performance (performance without I/O mod-
ules).

• Easy to expand even far beyond the topical target hardware

• The application can be ported to many hosting platforms
(TSIM today supports: Solaris, Linux and Windows)

• Debugging capabilities

High level description of an ASIC implementing CPU support and I/O control

Conclusion Page 37

And has the following disadvantages.

• Not an emulation

• Does not simulate true cycles

The conclusion is that we have fulfilled the scope and requirements
of this Master’s thesis.

5.3 Future work
As mentioned in the introduction this Master’s thesis was present-
ed open-ended. This proved to be for a good reason. The simulation
of hardware of this complexity can always be expanded or refined.
Therefore this subparagraph only will present recommendations on
what could be done next.

This project included creating a small user interface. This is an
area of knowledge one can become an expert on. We can only hope
that the user interface we have created will please as many as pos-
sible. It has however been made flexible enough to enable all imag-
inable (graphical) representations. This can be implemented
without too much work since the simulator communicates through
files, which easily can be processed by additional software.

The first thing to do though would probably be to implement the
other M1553 modes i.e. Bus monitor and Remote terminal to make
the M1553 modules complete. The following list is based on the up-
to-date known customer needs in priority order. The time typed in
italics after each bullet is an estimated time of development for one
person of equal knowledge of the system as we have. The estimation
is calculated from the complexity of the corresponding VHDL files
and in consultancy with the ASIC design group.

• M1553 Bus monitor and Receive terminal. (7 weeks)

• The PCI interface (10 weeks)

• Remaining modules (14 weeks)

Refer to chapter [4.3.1] when implementing additional modules
where a general implementation of a submodule is presented.

High level description of an ASIC implementing CPU support and I/O control

Page 38 Conclusion

High level description of an ASIC implementing CPU support and I/O control

Acknowledgements Page 39

Acknowledgements

First of all we would like to thank our tutors John Alexandersson
and Fredrik Hjalmarsson at Saab Ericsson Space for never hesitat-
ing to help us with all our technical questions. They have actively
followed our progress with interest, which has felt very supportive.

We also thank the division object manager of GEP Software, Anna-
lena Johansson for the same reason and for trusting us with this
project.

Further, we would like to thank our examiner Peter Folkesson for
taking on our Master’s thesis and Tor Skoglund and Darrel Cullen
for giving great feedback on our report.

Finally, we would like to thank the rest of the division for helping
us with the important evaluation of the product and giving us feed-
back on our design choices.

Edvin Catovic & Daniel Hedberg
Gothenburg, 4th of June 2002

High level description of an ASIC implementing CPU support and I/O control

Page 40

High level description of an ASIC implementing CPU support and I/O control

References Page 41

[1] TSIM Simulator User’s Manual ver. 1.1,
2002, Gaisler Research

[2] Rad-Hard 32-bit SPARC Embedded Processor User’s Manual
Rev. F,
2001, ATMEL Wireless & uC

[3] An overview of MIL-STD-1553,
http://www.aim-online.com, AIM GmbH

References

High level description of an ASIC implementing CPU support and I/O control

Page 42

High level description of an ASIC implementing CPU support and I/O control

Users’ and Developers’ Guide Page 43

Appendix A

 Users’ and Developers’ Guide
1 Introduction

This document is an addition to the Master’s thesis report
‘High level description of an ASIC implementing CPU support and
I/O control´ written by Edvin Catovic and Daniel Hedberg during
the spring of 2002. The purpose of this document is to reveal more
details that could be of interest for users and developers of the cre-
ated system.

The document is more straightforward on how to use the system
and how to create additional modules for the simulator but is not
stand-alone from the thesis report.

First the file structure will be presented to help the user or devel-
oper recognize the home directory Tsim_IO, in which the simulator
is located. This is followed by instructions on how to compile and
run the simulator system. Last in this chapter the source file
m1553X.c is included. The abbreviated file, which implements the
main part of the m1553 modules is thoroughly discussed.

High level description of an ASIC implementing CPU support and I/O control

Page 44 Users’ and Developers’ Guide

2 The File Structure
The file structure of the created systems source is represented in
Figure 2.1. AlarmSigGen and m1553 are expanded down to file lev-
el.

...Tsim_IO
 \
 -AlarmSigGen
 | \
 -Bank -AlarmSigGen.c
 | |
 -cpu_if -AlarmSigGen.h
 |
 -include
 |

 -PI_Master
 |

 -io
 |
 -m1553______
 | \
 -WD -m1553X.c

 |
 -m1553X.h

 |
 -m1553_types.h

 |
 -m1553func.c
 |
 -m1553func.h
 |
 -M5A.c
 |
 -M5A.h
 |
 -M5B.c
 |
 -M5B.h
 |
 -M5C.c
 |
 -M5C.h
 |
 -gererate.sh

Figure 2.1: The file structure

As seen in the figure the M1553 module is implemented in a way
that distinguishes it from the general case. This is an implementa-
tion suitable also for the SpaceWire, PWx and UART modules. They
have in common with M1553 multiple instances of the module im-
plemented in the COCOS.

The m1553X.c and m1553X.h files are the developer edit files. In these
files generic names are used (i.e. M1553X and M5X). In the Makefile
these files are processed by the shell script generate.sh which out-
puts M5A.c, M5A.h, M5B.c, M5B.h, M5C.c and M5C.h. These files are
used by the compiler as sources for the three modules M1553A,
M1553B and M1553C.

The files m1553_types.h, m1553func.c and m1553func.h contain help
functions and data structures used by the M1553 modules.

High level description of an ASIC implementing CPU support and I/O control

Users’ and Developers’ Guide Page 45

3 Compiling and Running
The system is compiled by running
% make

in ...Tsim_IO/io/. This is where the Makefile is located.

The system is preferably run by making a soft link of the io.so file
also located in this directory to your working directory. To start the
simulator simply type
% tsim-erc32

in your working directory.

As mentioned in paragraph [4.4.1] it is useful to execute TSIM com-
mands by using batch- or .tsimrc files [1]. This could be loading the
ERC32 executable, setting up debug levels and defining stimuli
files.

4 The Creation of a Submodule
The easiest way of giving an outline on how to create a submodule
is probably to make an example. First of all it is advised that the
section [4.3.1] on general implementation of a submodule is read.

This example is based on one of the M1553 modules. Some code has
been left out due to its irrelevance in this appendix. It holds most
of the possible properties in a submodule and therefore is a good ex-
ample. Reading about its design in section [2.3.3] might give you an
idea of what parts have similarities to your design. Remember that
this implementation is just an advice and that we hold no con-
straints on the design of a submodule except for its interfaces to
PIM. Breaking that constraint would probably make the over-all
design less serviceable.

4.1 The M1553X.c File

Our environment offers many data structures that can be included.
Some are optional and some are necessary. You must consult the
corresponding files to decide what needs your particular module
has.

#include <stdio.h>
#include “../include/cocos_types.h”
#include “../cpu_if/cpu_if.h”
#include “m1553_types.h”
#include “../io/clog.h”
#include “m1553.h”

Figure 4.1: Includes

If the module implements registers these are declared as seen in
Figure 4.2.

High level description of an ASIC implementing CPU support and I/O control

Page 46 Users’ and Developers’ Guide

/**
* M5C internal registers
 **
static unsigned int
 M5C_REG1,
 M5C_REG2,
 M5C_REG3,
 ...
 M5C_REG<n>;

#define M5C_Virtual1 (M5C_REG1 & M5C_REG2)
#define M5C_Virtual2 (M5C_REG1 & M5C_REG2)
#define M5C_Virtual3 M5C_REG1

Figure 4.2: Register declarations

The defines are the way virtual registers are implemented. These
have their own addresses but reflect other registers. This could in-
clude boolean operations on more than one register as seen above.

Since this module also depends on a state machine the different
states are declared as seen in Figure 4.3.

typedef enum {
 BC_SLDisabled,
 BC_GetFirstSLBlock,
 BC_CommandOutput,
 BC_GetNextSLBlock
} m1553State_T;

static m1553State_T m1553State;

Figure 4.3: State declarations

If the module needs to be initialized in some way an extern function
should be produced. This function shall be called from io_init(), in
io.c. For this module it looks like in Figure 4.4

/**
 * M5C_Init

 *
 * WHAT DESCRIPTION:
 * M5C_Init initializes M5C module.
 *
 * PARAMETERS:
 * None.
 *
 * RETURN VALUES:
 * None.
 *
 */

extern void M5C_Init()
{
 CLog(M1553C, INFO, 1, “Initialized”);
 M5C_REG1 = 0x0;
 M5C_REG2 = 0x0;
 M5C_REG3 = 0x0;
 ...
 M5C_REG<n> = 0x0;
}

Figure 4.4: Init() function

In the beginning of this function the first call to an external func-
tion is made. CLog(M1553C, INFO, 1, “Initialized”); is a call to the
built in event logging feature. CLog() should be used whenever
something happens in the execution that could be useful to log. The
first parameter must be the name of the module. The module name
must be a subset of Module_T; in cocos_types.h. The second is the
type of message (INFO, ERROR or WARNING). The third is its pri-

High level description of an ASIC implementing CPU support and I/O control

Users’ and Developers’ Guide Page 47

ority (1, 2 or 3). A rule of thumb should be that priority one is used
for things that should not have happened during normal execution
or has great relevance (e.g. initialization). Most important is to not
spam the user in priority one. Priority two could be anything that
is out of the ordinary such as reading write only registers or putting
the watchdog in an undefined configuration. Priority three is the
rest of the messages including details for debugging purposes.

For more information refer to the CLog() in CLog.c.

The core of this module is the function m1553_Sim() in Figure 4.5
which implements a state machine controlling the more complex
behaviouristics of the module. Pseudo code replaces some code
blocks and are preceded by ‘--’.

/**
 * m1553Sim()
 **
 * WHAT DESCRIPTION:
 * m1553Sim() is a statemachine for the M5C module
 *
 * RETURN VALUES:
 * none
 *
 ***/

static void m1553C_Sim() {

 --Declarations

 switch (m1553State)
 {
/**************************
 * BC_SLDisabled:
 *************************/

 case BC_SLDisabled:
 CLog(M1553C, INFO, 2, “BC Disabled/halted”);
 break;

 /* The BC is activated. */
/**************************
 * BC_GetFirstSLBlock:
 *************************/

 case BC_GetFirstSLBlock:
 --Get the first block and store it a data structure
 --Calculate CommandDelay

 /* Goto next state */
 m1553State = BC_CommandOutput;
 simif.event(m1553C_Sim, 0, (uint64) CommandDelay);

 break;

/**************************
 * BC_CommandOutput:
 *************************/

 case BC_CommandOutput:

 --Generate bustraffic

/* Go to next state */
m1553State = BC_GetNextSLBlock;
simif.event(m1553C_Sim, 0, 0);

 break;

/**************************
 * BC_GetNextSLBlock:
 *************************/

 case BC_GetNextSLBlock:

 --Get the next block and store it a data structure
 --Calculate CommandDelay

High level description of an ASIC implementing CPU support and I/O control

Page 48 Users’ and Developers’ Guide

 /* Go to next state */
 m1553State = BC_CommandOutput;
 simif.event(m1553C_Sim, 0, (uint64) CommandDelay);
 break;

/**************************
 * default:
 *************************/

 default:
 CLog(M1553C, ERROR, 1, “m1553C_Sim()”);
 break;
 }

}

Figure 4.5: Sim() function

As seen above a state machine is implemented by updating a state
variable i.e. m1553State and then schedule a function call of
m1553C_Sim() through the TSIM function simif.event() with a

calculated delay.

The registers in Figure 4.2 must be accessible by PIM through ex-
ternal functions such as the two in Figure 4.6 and Figure 4.7.

/**
 * M5C_RegWrite()
 **
 * WHAT DESCRIPTION:
 * M5C_RegWrite() writes registers inside the module
 *
 * PARAMETERS:
 * Addr => 32 bit address to the register.
 * Data => Points to the data to be written to the
 * register
 *
 * RETURN VALUES:
 * 0 on success, 1 otherwise.
 *
 ***/

extern int M5C_RegWrite(unsigned int Addr, unsigned int *Data) {

 CLog(M1553C, INFO, 3, “Writing %s register addr=0x%08x value=0x%08x”,
 “M1553C”, Addr, *Data);

 switch (Addr) {
 case M5C_REG1_RegByteAddr:
 case M5C_REG2_RegByteAddr:
 case M5C_REG3_RegByteAddr:
 CLog(M1553C, WARNING, 1, “M5C_RegWrite:Write violation.
 Writeprotected reg addr=0x%08x”, Addr);
 break;
 case M5C_REG4_RegByteAddr :
 M5C_REG4 = (*Data) | M5C_REG4;
 break;
 case M5C_REG5_RegByteAddr :
 M5C_REG5 = *Data;
 break;
 case M5C_REG6_RegByteAddr :
 M5C_REG6 = (*Data) | M5C_Stat;
 if ((m1553State == BC_SLDisabled) &&

 (GET_BIT(M5C_REG3, 7) == 0x1) &&
 (GET_BIT(M5C_REG6,0) == 0x1) &&
 (GET_BIT(M5C_REG6,3) == 0x1))

 {
 CLog(M1553C, INFO, 1, “SLAct set, BC active”);
 m1553State = BC_GetFirstSLBlock;
 m1553C_Sim();
 }

High level description of an ASIC implementing CPU support and I/O control

Users’ and Developers’ Guide Page 49

 break;

 ...

 case M5C_REG<n>_RegByteAddr :
 M5C_REG<n> = *Data;
 break;
 default:
 CLog(M1553C, WARNING, 2, “Write access of unimplemented or
 nonexisting register.”);
 return 1;
 break;
 }
 return 0;
}

Figure 4.6: RegWrite() function

As seen above in the beginning of the function a CLog() function
may have a variable number of user defined parameters succeeding
the obliged ones.

/**
 * M5C_RegRead()
 **
 * WHAT DESCRIPTION:
 * M5C_RegRead() reads registers inside the module
 *
 * PARAMETERS:
 * Data => Variable where the function should return the
 * value of the requested register.
 *
 * RETURN VALUES:
 * 0 on success, 1 otherwise.
 *
 ***/

extern int M5C_RegRead(unsigned int Addr, unsigned int *Data) {

 switch (Addr) {
 case M5C_PIMSR_RegByteAddr :
 *Data =M5C_PIMSR;
 break;
 case M5C_PIMR_RegByteAddr :
 *Data =M5C_PIMR;
 M5C_PIR = 0;
 CpuIf_DeassertInterrupt(M1553C); /* Clear corresponding
bit in CPUIF_IPR */
 break;
 case M5C_REG4_RegByteAddr :
 *Data =0x0;
 CLog(M1553C, WARNING, 1, “Reading write-only M5REG4 Register”);
 break;
 caseM5C_REG4_RegByteAddr :
 *Data =0x0;
 CLog(M1553C, WARNING, 1, “Reading write-only M5REG4 Register”);
 break;
 caseM5C_REG4_RegByteAddr :
 *Data =0x0;
 CLog(M1553C, WARNING, 1, “Reading write-only M5REG4 Register”);
 break;
 caseM5C_REG5_RegByteAddr :
 *Data =M5C_REG5;
 break;
 caseM5C_REG6_RegByteAddr :
 *Data =M5C_REG6;
 break;

 ...

 caseM5C_REG<n>_RegByteAddr :
 *Data =M5C_REG<n>;
 break;
 default:
 CLog(M1553C, WARNING, 2, “Read access to unimplemented or
 nonexisting register.”);
 return 1;
 break;
 }
 return 0;
}

Figure 4.7: RegRead() function

High level description of an ASIC implementing CPU support and I/O control

Page 50 Users’ and Developers’ Guide

To support the COCOS specific TSIM command dumpregs, a func-
tion of the syntax in Figure 4.9 must be implemented. The bold

lines in io_command() in io_command.c must also be added as in Fig-
ure 4.8.

 else if (strcmp(cmd1, “dumpregs”) == 0)
 {
 token = strtok(NULL, “ \t\n\r”);
 if (token != NULL)
 {
 if (strcmp(token, “CPUIF”) == 0)

CpuIf_DumpRegs();
 else if (strcmp(token, “PIM”) == 0)

PIM_DumpRegs();
 else if (strcmp(token, “M1553A”) == 0)

M5A_DumpRegs();
 else if (strcmp(token, “M1553B”) == 0)

M5B_DumpRegs();
 else if (strcmp(token, “M1553C”) == 0)

M5C_DumpRegs();
 else if (strcmp(token, “ASG”) == 0)

ASG_DumpRegs();
 else if (strcmp(token, “WD”) == 0)

WD_DumpRegs();
 else

return(0);
 return 1;
 }
 else
 return(0);
 }

Figure 4.8: Subset of io_command() function

/**
 * M5C_DumpRegs()
 **
 * WHAT DESCRIPTION:
 * M5C_DumpRegs prints the contents of all registers
 * implemented in M5C.
 *
 * PARAMETERS:
 * None
 *
 ***/

extern void M5C_DumpRegs()
{
 printf(“M5C_REG1\t= 0x%08x\n”, M5C_REG1);
 printf(“M5C_REG2\t= 0x%08x\n”, M5C_REG2);
 printf(“M5C_REG3\t= 0x%08x\n”, M5C_REG3);
 ...
 printf(“M5C_REG<n>\t= 0x%08x\n”, M5C_REG<n>);
}

Figure 4.9: DumpRegs() function

High level description of an ASIC implementing CPU support and I/O control

Stimuli File Syntax Page 51

Appendix B

Stimuli File Syntax
1 Stimuli File Syntax Definition

The bus traffic coming from modules on a 1553 bus such as RTs or
a BC outside the COCOS I/O module is simulated by writing a stim-
uli file. An informal description of the stimuli file syntax is given in
this appendix. Input files to flex (lexical analyser tool) and bison
(parser tool) define the syntax of the stimuli files.
Chapter [4.4.1] describes the setstim command used at the TSIM
prompt to read a stimuli file.

The stimuli file contains one section for traffic to each M1553 mod-
ule in the COCOS I/O module:

M1553A:
<M1553 bus traffic>

M1553B:
<M1553 bus traffic>

M1553C:
<M1553 bus traffic>

If some of M1553 modules (M1553A, M1553B, M1553C) is not im-
plemented or not simulated the corresponding section can be left
out.

For each module, the bus traffic coming from RT and/or BC unit can
be described. If there are no messages coming from RT or BC units
the stimuli can be left out.

<M1553 bus traffic> ::= <RT stimuli>
 <BC stimuli>

RT Stimuli

The RT stimuli describe messages coming from RTs on the simulat-
ed bus. The RT stimuli are typically used when a BC is simulated
in the COCOS I/O module in order to simulate responses from RTs
on a 1553 bus.

High level description of an ASIC implementing CPU support and I/O control

Page 52 Stimuli File Syntax

<RT stimuli> ::=
RT_Response:

<repeat> <status word> <data word 1> ... <data word n> <transfer
status> <response time>

...

Each line corresponds to a message from a RT unit and contains in-
formation on how many times the message is repeated, status
word, data words, transfer status and response time.

<repeat> ::= <integer>

A message is repeated for <repeat> number of times. If set to 0, the
message is repeated forever.

<status word> ::= 0x0 - 0xffff

1553 status word in hexadecimal representation. See Figure 2.5 in
[2.3.3] for bit mapping.

<transfer status> ::= OK
| error=0x0-0xffffffff

A hexadecimal value describing the status of the message transfer.
OK indicates that no errors occurred during the message transfer
otherwise the value following “error=” is mapped to the relevant
bits of the local message word in the response block. If a bit is set
in the <transfer status> word the corresponding bit in local mes-
sage word.

<data word> ::= 0x0 - 0xffff

Data words are 16 bit values. A message from a RT unit can contain
0 to 15 data words. The data word list is left out in stimuli file if the
message does not contain any data words.

<response time> ::=rt=<integer>
 | NO_RT_RESPOSNE

Inter-message gap in bit times between the message and the next
message. Special value NO_RT_RESPONSE is used to simulate
lost message.

BC Stimuli

Stimuli from a BC unit is a list of messages having following for-
mat:

<BC stimuli> ::=
BC_Command:

<time> <BC command> <1553 bus> <RT address> <RT subaddress> <data
word count> <data word 1> .. <data word n>

<time> ::= T<unsigned int value>

Time when the command should be transferred on the bus.

<BC command> ::= TRANSMIT
|RECEIVE

Transmit or receive command.

<1553 bus> ::= BUS_A |BUS_B

High level description of an ASIC implementing CPU support and I/O control

Stimuli File Syntax Page 53

The bus on which the message is sent.

<RT address> ::= 0 - 31

The value of RT address field of a 1553 command word.

<RT subaddress> ::= 0 - 31

The value of RT Subaddress field of a 1553 command word.

<data word count> ::= 0 - 31

The value of Data Word Count/Mode Code field of a 1553 command
word.

<data word 1> ... <data word n>

List of 16 bit data words following a 1553 command. The list is left
out if the command is not followed by data words.

