

Development Board

2020 User's Manual The most important thing we build is trust

# GR-VPX-GR740-BOARD

# **Development Board**

# **User's Manual**

Intentionally Blank

### **Table of Contents**

| 1 | Introdu      | ıction                                                         | 7  |
|---|--------------|----------------------------------------------------------------|----|
|   | 1.1          | Scope of the Document                                          | 7  |
|   | 1.2          | Reference Documents                                            |    |
| 2 | Abbrev       | viations                                                       | 8  |
| 3 | <b>Board</b> | Introduction                                                   | 9  |
|   | 3.1          | Overview                                                       | 9  |
|   | 3.2          | Handling                                                       | 13 |
| 4 | <b>Board</b> | Design                                                         | 14 |
|   | 4.1          | Board Block Diagram                                            | 14 |
|   | 4.2          | Board Mechanical Format                                        | 15 |
|   | 4.3          | GR740 Microcontroller                                          | 18 |
|   | 4.4          | Memory                                                         | 18 |
|   | 4.5          | Main Board Interfaces                                          | 18 |
|   | 4.5.1        | SPW Interfaces                                                 | 18 |
|   | 4.5.1.1      | SPW connector implementation details and precautions to follow | 20 |
|   | 4.5.2        | Ethernet                                                       | 20 |
|   | 4.5.3        | MIL-1553                                                       | 20 |
|   | 4.5.4        | PPS                                                            | 21 |
|   | 4.5.5        | FTDI (USB Serial)                                              | 21 |
|   | 4.5.6        | VPX Backplane                                                  | 21 |
|   | 4.6          | Mezzanine Interfaces                                           | 22 |
|   | 4.7          | GPIO                                                           | 24 |
|   | 4.8          | Debug Support Unit Interfaces                                  | 28 |
|   | 4.9          | Oscillators and Clock Inputs                                   | 29 |
|   | 4.10         | Power Supply and Voltage Regulation                            | 31 |
| 5 | Setting      | Up and Using the Board                                         | 33 |
|   | 5.1          | Switches and Bootstrap Signals                                 | 33 |
|   | 5.1.1        | SP3T Switch description and configuration properties           |    |
|   | 5.1.2        | GR740 Bootstrap Signals                                        | 35 |
|   | 5.1.3        | Other configurable switches default settings                   |    |
|   | 5.2          | Jumper configurations                                          | 37 |
|   | 5.2.1        | Default Setting of Jumpers – GR-VPX-GR740                      |    |
| 6 | Interfa      | ces and Configuration                                          | 39 |

7

| 6.1 | List of Connectors – GR-VPX-GR740                      | 40 |
|-----|--------------------------------------------------------|----|
| 6.2 | List of Connectors – GR-VPX-SPW-MEZZ                   | 40 |
| 6.3 | List of Oscillators, Switches and LED's - GR-VPX-GR740 | 47 |
| Cha | ange Record                                            | 52 |

### **List of Figures**

| Figure 3-1: GR-VPX-GR740 Development Board mounted with GR-VPX-SPW-MEZZ mezz | anine |
|------------------------------------------------------------------------------|-------|
| board                                                                        | 10    |
| Figure 3-2: GR-VPX-GR740 Main Board without mezzanine board                  | 12    |
| Figure 4-1: GR-VPX-GR740 Board Board Block Diagram                           | 14    |
| Figure 4-2: GR-VPX-SPW-MEZZ Mezzanine Board Block Diagram                    | 15    |
| Figure 4-3: VPX Style mechanical keying                                      | 16    |
| Figure 4-4: Mezzanine board mounted on a GR-VPX-GR740 main board             | 17    |
| Figure 4-5: On-Board Spacewire Connections                                   | 19    |
| Figure 4-6: PPS input circuitry                                              | 21    |
| Figure 4-7: Configuration option for switch S23 and S24                      | 27    |
| Figure 4-8: Configuration option for switch S27 to S41                       | 27    |
| Figure 4-9: Debug Support Unit connections                                   | 28    |
| Figure 4-10: Board level Clock Distribution Scheme – GR-VPX-GR740            | 30    |
| Figure 4-11: Power Regulation Scheme – GR-VPX-GR740                          | 31    |
| Figure 5-1: SW-SP3T configuration options and schematics                     | 34    |
| Figure 5-2: SW-SP3T mapping between schematics and a switch onboard          | 34    |
| Figure 5-3: Configuration options for switch S1 to S22                       | 35    |
| Figure 5-4: GR740SBC Bootstrap Signals default configuration                 | 36    |
| Figure 6-1: Front Panel View (pins 1 marked red)                             | 39    |
| Figure 6-2: GR-VPX-GR740 PCB Top View                                        | 49    |
| Figure 6-3: GR-VPX-GR740 PCB Bottom View                                     | 50    |

### **List of Tables**

| Table 1: GR740 SpW Router Port mapping to Front panel interfaces | 19 |
|------------------------------------------------------------------|----|
| Table 2: GR740 SpW Router Port mapping to Backplane interfaces   | 19 |
| Table 3: Functions assigned to GPIO signals of GR740             | 25 |
| Table 4: Functions assigned to GPIO2 signals of GR740            | 26 |
| Table 5: GR740 Bootstrap Settings                                | 36 |
| Table 6: GR740 GPIO Bootstrap Settings                           |    |
| Table 7: Other configurable switches default settings            | 37 |
| Table 8: Default Setting of Jumpers – GR-VPX-GR740               |    |
| Table 9: List of Connectors – GR-VPX-GR740                       | 40 |
| Table 10: List of Connectors – GR-VPX-SPW-MEZZ                   | 40 |
| Table 11: J1 POWER – External Power Connector                    | 41 |
| Table 12: J2 Dual MIL-STD-1553 interface connections             | 41 |
| Table 13: J3 RJ45-ETHERNET Connector                             | 41 |
| Table 14: J4 PPS Input                                           | 41 |

| Table 15: J5: Front Panel Input/Output pins               | 42 |
|-----------------------------------------------------------|----|
| Table 16: J6: SDRAM SODIMM socket Pin-out                 | 44 |
| Table 17: J7 GR740 – JTAG Connector                       | 44 |
| Table 18: J8 USB Micro connector – FTDI Quad Serial Link  | 44 |
| Table 19: J9 Mezzanine Connector – Female                 | 45 |
| Table 20: J10 SPW-HDR interface connections               | 46 |
| Table 21: J11 FPGA– JTAG Connector                        | 46 |
| Table 22: List and definition of Oscillators and Crystals | 47 |
| Table 23: List and definition of PCB mounted LED's        | 47 |
| Table 24: List and definition of Switches                 | 48 |

#### 1 Introduction

#### **1.1** Scope of the Document

This document provides a User's Manual and Interface document for the "GR-VPX-GR740-BOARD" Development and Demonstration board.

The work has been performed by Cobham Gaisler AB, Göteborg, Sweden.

#### **1.2 Reference Documents**

- [RD1] GR740, "Data Sheet and User's Manual",Cobham Gaisler, GR740-UM-DS, available from <u>http://www.gaisler.com/index.php/products/components/GR740</u>
- [RD2] GRMON3 User's Manual, available from: https://www.gaisler.com/index.php/products/debug-tools/grmon3
- [RD3] GR-VPX-GR740 Board\_schematic.pdf, Schematic
- [RD4] GR-VPX-GR740 Board\_assy\_drawing.pdf, Assembly Drawing

### 2 Abbreviations

| ASIC | Application Specific Integrated Circuit. |  |  |
|------|------------------------------------------|--|--|
| DSU  | Debug Support Unit                       |  |  |
| EDAC | Error Detection and Correction           |  |  |
| EDCL | Ethernet Debug Communication Link        |  |  |
| ESD  | Electro-Static Discharge                 |  |  |
| GPIO | General Purpose Input / Output           |  |  |
| IC   | Integrated Circuit                       |  |  |
| I/O  | Input/Output                             |  |  |
| IP   | Intellectual Property                    |  |  |
| LDO  | Low Drop-Out                             |  |  |
| LVDS | Low Voltage Digital Signalling           |  |  |
| PCB  | Printed Circuit Board                    |  |  |
| PCI  | Peripheral Component Interconnect        |  |  |
| POL  | Point of Load                            |  |  |
| PPS  | Pulse Per Second                         |  |  |
| PROM | Programmable Read Only Memory            |  |  |
| SOC  | System On a Chip                         |  |  |
| SP3T | Single Pole,3-throw (position) Switch    |  |  |
| SPW  | SpaceWire                                |  |  |
| TBC  | To Be Confirmed                          |  |  |
| TBD  | To Be Defined                            |  |  |

### **3 Board Introduction**

#### 3.1 Overview

This document describes the *GR-VPX-GR740* Development Board.

This equipment is a 1 slot, 6U high board with a VPX backplane format, consists of

- Main Board: *GR-VPX-GR740*
- Mezzanine Board: GR-VPX-SPW-MEZZ

The GR-VPX-GR740 board shown in Figure 3-1 integrated with a 6U front panel and a mezzanine board, which can be used stand alone on the bench top, or installed in a VPX rack.

A GR-VPX-SPW-MEZZ mezzanine board has been developed and integrated with the GR-VPX-GR740, which provides two SpaceWire interface from the GR740 to the Front panel.

This board provides developers with a convenient hardware platform for the evaluation and development of software.

Note: The delivered product is GR-VPX-GR740 main board and GR-VPX-SPW-MEZZ mezzanine board, the mezzanine board only provides two SpaceWire interfaces in the front panel.

This user manual provides information about the GR-VPX-GR740 main boards many different mezzanine interfaces through out the document, such descriptions are provided in order to help the users to develop their own mezzanine board, for example see section 4.6 Mezzanine Interfaces. However, the delivered GR-VPX-SPW-MEZZ do not implement all such interfaces and only provides two SpaceWire interfaces in the front panel.



Figure 3-1: GR-VPX-GR740 Development Board mounted with GR-VPX-SPW-MEZZ mezzanine board

The board contains the following main items as detailed in section 4 of this document: Main Board

- size 233.35x160mm
- Cobham Gaisler GR740 radiation-hard system-on-chip featuring a quad-core fault-tolerant LEON4 SPARC V8 processor
- 1 Mbit (128k x 8bit) MRAM
- 512 Mbit SPI memory (Cypress, S25FL512SAGN in SOIC-16 package)
- SODIMM socket for SDRAM memory (48 bit wide interface)
- Gbit Ethernet interface with standard RJ45 connector
- Dual MIL-1553 Interface
- 1 PPS interface
- FTDI Serial to USB converter for JTAG and UART interface
- Front Panel General Purpose IO interface
- FMC style 400 pin mezzanine connector
- VPX Backplane interface
- VIN power input (+5V to +12V) via backplane or 2 pin header
- on-board regulators converting from VIN to 3.3V, 2.5V & 1.2V
- switches for bootstrap and configuration settings

#### Mezzanine Board

- GR-VPX-SPW-MEZZ
  - 2 SpaceWire interfaces connected to the GR740 router (Port 1 and 2)



Figure 3-2: GR-VPX-GR740 Main Board without mezzanine board

#### 3.2 Handling

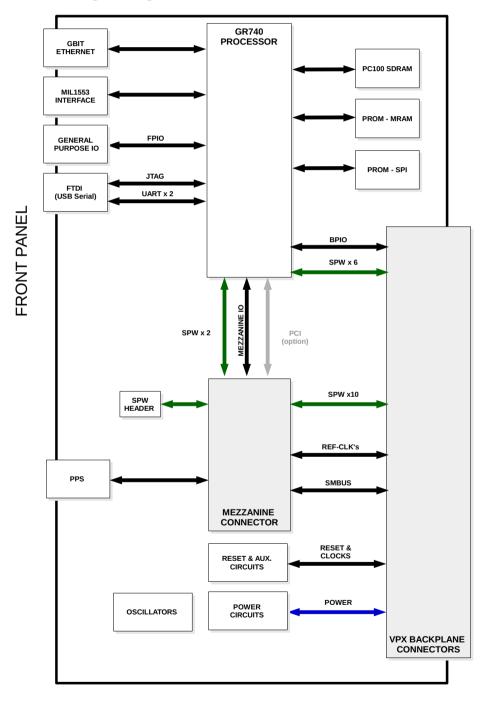


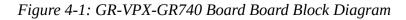
### ATTENTION: OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC SENSITIVE DEVICES

This unit contains sensitive electronic components which can be damaged by Electrostatic Discharges (ESD). When handling or installing the unit observe appropriate precautions and ESD safe practices.

When not in use, store the unit in an electrostatic protective container or bag.

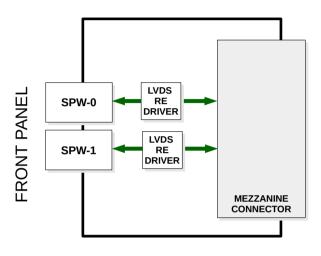
When configuring the jumpers on the board, or connecting/disconnecting cables, ensure that the unit is in an unpowered state.


When operating the board in a 'stand-alone' configuration, the power supply should be current limited to prevent damage to the board or power supply in the event of an overcurrent situation.


This board is intended for commercial use and evaluation in a standard laboratory environment, nominally, 20°C. All devices are standard commercial types, intended for use over the standard commercial operating temperature range (0 to 70°C).

### 4 Board Design

#### 4.1 Board Block Diagram


The *GR-VPX-GR740* Board provides the electrical functions and interfaces as represented in the block diagram, Figure 4-1.





The Mezzanine connector of the *GR-VPX-GR740* is a FMC High Pin Count (400 pin) connector conforming to the VITA57.1 format.

The *GR-VPX-SPW*-MEZZ board has been designed to mount on this connector and provides the electrical functions and interfaces as represented in the block diagram, Figure 4-2.



SpW0 is connected with GR740 SPWROUTER PORT1 SpW1 is connected with GR740 SPWROUTER PORT2

Figure 4-2: GR-VPX-SPW-MEZZ Mezzanine Board Block Diagram

#### 4.2 Board Mechanical Format

The design is conceived as a 6U high, 1 slot (25.4mm) wide module for mounting in the controller slot of a 6U rack with a VPX Backplane.

The dimensions of the main PCB are 233.35x160mm (excluding the connector protrusions).

To ensure boards are correctly installed in the appropriate slot of a backplane, the VPX backplane standard defines mechanical alignment keys (Figure 4-3) which can be defined with various orientations of keying.

However, as the keying for the backplane itself is not definitively known at this stage, this board has been equipped with 'universal' keys (Part number TE-1-1469492-9), allowing its installation into any slot. These keys can easily be dismounted and replaced with specific key parts if when these are known.



Figure 4-3: VPX Style mechanical keying

This prototype board is intended for installation in a rack with forced air cooling. However, for installation in conduction cooled environment, a future design could accommodate standard wedge locks on the top and bottom rail edges of the board.

This would require the exact wedge lock type and mounting hole definition to be known, and the front panel to be modified to accommodate them.

A standard FMC style (VITA 57.1) mezzanine interface connector allows the Mezzanine board to be mounted to the main board.

The dimensional format, outline and mezzanine connector position for the Mezzanine board follows the requirements of VITA57.1 for a double-slot conduction cooled board.

Due to the necessity to be able to fit the SDRAM module and power converters on the mezzanine board, the back edge of the board has been extended, giving an overall size of 139 x 117.5mm.

The face to face mounting distance of the two boards is 10mm. While the prototype board is mounted using simple 10mm nickel-brass Hex spacers, a future design could accommodate a custom aluminium bracket to act as a thermal interface between the two boards.

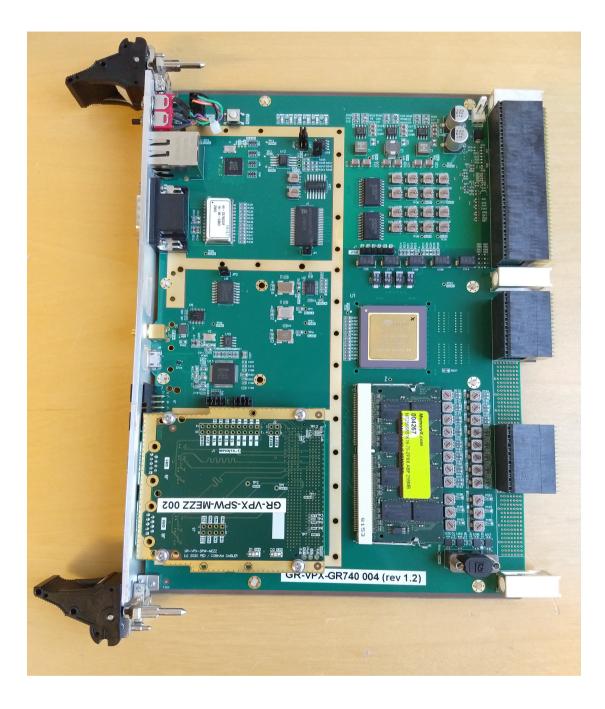



Figure 4-4: Mezzanine board mounted on a GR-VPX-GR740 main board

#### 4.3 GR740 Microcontroller

The *GR740 Leon Processor* is a complex device with many modes of operation. For the details of the interfaces, operation and programming, refer to [RD1].

#### 4.4 Memory

These boards incorporate various on-board memories as follows:

<u>Main Board</u>

SODIMM -SDRAM An SODIMM Module with 48 bit wide interface to the GR740 with 32 bit data and 16 bit check-bit memory width. **MRAM – PROM** An MRAM based, 8 bit wide boot Prom is connected to the Prom interface of the GR740. The implemented device is an Everspin MR0A08B, which is a 128k x 8bit, 3.3V device. This device is pin compatible with and alternative device from 3D plus: 3DMR1M08VS1426. **SPI Flash** 512 Mbit SPI serial boot prom (Cypress, S79FL512S). The SPI boot memory is connected directly to the SPIM interface of the GR740 Micro-controller. S79FL256S consists of two SPI devices internally. Clock and chip select is common for the two internal chips bus the MOSI/MOSI buses are independent. IO0..IO3 versus IO4..IO5. Only the first data bus is connected with the GR740 and the GR740 has only one SPI bus. The consequence is that only half the device capacity can be used. Hence S79FL512S is used to get 32 MiB capacity.

#### 4.5 Main Board Interfaces

#### 4.5.1 SPW Interfaces

The board incorporates a large number of SpaceWire Links distributed between the VPX backplane, GR740 Processor, mezzanine connector, External Front panel connectors and an on board header/connector.

The on-board SPW network is represented in the figure below.

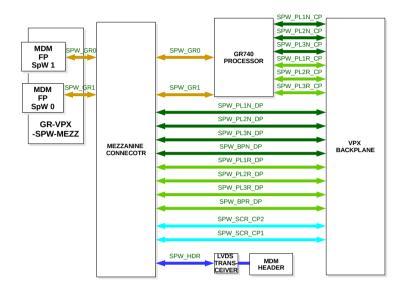



Figure 4-5: On-Board Spacewire Connections

| GR740 SPW router<br>port number | Front panel SpW interface        |
|---------------------------------|----------------------------------|
| PORT 1                          | Front Panel port marked as SpW-0 |
| PORT 2                          | Front Panel port marked as SpW-1 |

#### Table 1: GR740 SpW Router Port mapping to Front panel interfaces

| GR740 SPW router<br>port number | Backplane SpW Interface |
|---------------------------------|-------------------------|
| PORT 3                          | SPW_PL1R_CP             |
| PORT 4                          | SPW_PL2N_CP             |
| PORT 5                          | SPW_PL3R_CP             |
| PORT 6                          | SPW_PL2R_CP             |
| PORT 7                          | SPW_PL1N_CP             |
| PORT 8                          | SPW_PL3N_CP             |

#### Table 2: GR740 SpW Router Port mapping to Backplane interfaces

The *SPW\_0* and *SPW\_1* link connect to MDM9S connector on the *GR-VPX-SPW-MEZZ* board and is buffered with a *DS10BR150* LVDS repeater circuits.

The *SPW\_HDR* link connect to an MDM9S connector on the *GR-VPX-GR740* board and is buffered with a *DS10BR150* LVDS repeater circuits.

#### 4.5.1.1 SPW connector implementation details and precautions to follow

This equipment has SPW ports that use Low Voltage Differential Signalling (LVDS) which has limited common mode voltage protection.

Before plugging the SPW cable between two equipment's please power up and make sure that there is no voltage difference between their grounds.

The SPW standard specification specifies that the cable side outer-shield is bonded to the connector shell, but does not say anything about the grounding/bonding of the connector side shell. In this equipment the SPW connector side shell are by default bonded to the front panel/box local chassis but not bonded to the local GND of the SPW circuits.

The pin three of this equipment's SPW connectors are connected to the GND through a parallel capacitor (100p) and resistor (10k) network. When connected to a SPW cable (properly designed as per the standard) the pin three will be connected to its inner shield. Note the inner shield does not provide end to end ground connection between two equipment's as per the SPW standard.

In this equipment there is no grounding provided via the SPW connectors (neither through pin three inner shield nor through connector side shell between two equipments). The users connecting the board to other equipment only via SPW should ensure grounding via other means (e.g. a dedicated wire).

#### 4.5.2 Ethernet

An Ethernet RJ45 interface is provided on the board front panel, and is connected to the Ethernet interface of the *GR740 processor*. This interface can operate in either 100Mbit or Gbit mode, and can be used either for standard networking, or if the GR740 is configured, can be used for a debug communication link over Ethernet (EDCL).

An external PHY, (*Micrel KSZ9021GN*) is implemented on the board.

#### 4.5.3 MIL-1553

A dual MIL-1553 interface is provided on the board, with a DSUB 9 pin connector (J3) on the front panel. The interface is connected to the MIL-1553 interface pins of the *GR740*, via a *Holt HI-2579* transceiver. This is a CMOS dual transceiver with integrated transformers designed to meet the requirements of the MIL-STD-1553 / MIL-STD-1760 specifications.

The configuration on the board is intended for 'transformer coupling'. For a 'direct coupling' interface to external equipment external 55 Ohm series resistors would be

have to be added externally. If necessary for the configuration being used, external parallel termination may have to be added.

#### 4.5.4 PPS

An SMB connector is available on the front panel. This signal is terminated with a 50 Ohm load and buffered. The PPS signal input is inverted by the buffer and driven as PPS\_IN and PPS\_IN2. The PPS\_IN is interfaced with the mezzanine connector, which can be used by the mezzanine board to process the input and output PPS\_OUT signal which is also available from the mezzanine connector.

A jumper option on the board, *JP10*, allows to select PPS\_IN2 (unprocessed PPS) or PPS\_OUT (processed PPS) to be driven to the GPIO0 of GR740 and distributed over the backplane as a differential signal on the AUXCLK\_OUT pins.

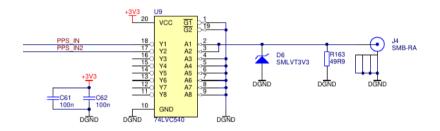



Figure 4-6: PPS input circuitry

#### 4.5.5 FTDI (USB Serial)

An FTDI FT4232 serial to USB interface chip is implemented on the board to allow an external PC to interface to the following serial interfaces

- GR740 JTAG DSU interface
- GR740 UART-0 serial interface
- GR740 UART-1 serial interface

The front panel interface connector is a standard USB Micro-AB style connector.

#### 4.5.6 VPX Backplane

The design is required to support several different backplane routing schemes with prime and redundant SPW connections over the Data Plane and Control planes.

This requires many resistors to be installed or removed depending on which configuration is required to be implemented. For details, refer to the schematic diagrams [RD3].

#### 4.6 Mezzanine Interfaces

Note: The delivered product is GR-VPX-GR740 main board and GR-VPX-SPW-MEZZ mezzanine board, the mezzanine board only provides two SpaceWire interfaces in the front panel.

This section provides information about the GR-VPX-GR740 main boards many different mezzanine interfaces, such descriptions are provided in order to help the users to develop their own mezzanine board. The delivered GR-VPX-SPW-MEZZ do not implement all listed interfaces below and only provides two SpaceWire interfaces in the front panel.

The Mezzanine connector is a FMC High Pin Count (400 pin – Female) connector conforming to the VITA57.1 format.

- HPC-400 FMC connector
- 2 SpaceWire interfaces connected to the GR740 router (Port 1 and 2)
- 2 Thin Pipes routed to P1 on the back edge (used for 2 SpaceWire interfaces)
- 2 Fat Pipes and 4 Half Pipes routed to P3 and P5 on the back edge
- 1 SpaceWire interface to on-board MDM9S connector (SPW-HDR)
- PPS
  - Input from the Front-panel
  - Output to the backplane as AUXCLK\_OUT
- CLK25 25 MHz clock from an oscillator on board as input to the mezzanine board
- Additional backplane clocks
  - REFCLK\_OUT from the mezzanine can be connected to a LVDS transmitter onboard the GR-VPX-GR740, the LVDS output is connected to backplane signal REF-CLK.
  - REF-CLK1 and REF-CLK2 connected to the backplane (Differential LVDS in or out, must be driven as needed form the mezzanine board)
- SMBUS to VPX backplane
- Power to mezzanine circuits (+12V nominal)
- 9 General purpose I/O from the GR740 (MPIO signals 1 9)
  - Note the GPIO (MPIO) signals are also shared with bootstrap functionality (see Table 6).
- *RESETN* from main board reset circuit
- *SYSCON#* and *SYSCONP#* from VPX backplane

•

- PCI interface (32-bit) from the GR740
  - The PCI\_HOSTN signal for the GR740 is pulled HIGH in the GR-VPX-GR740. The PCI\_HOSTN is also connected to the mezzanine from where this signal can be driven low to make the GR740 as Initiator/Master PCI interface.
  - The PCI\_INTA, PCI\_INTB, PCI\_INTC and PCI\_INTD are pulled high in the GR-VPX-GR740.
  - The PCI GNT signal is pulled high in the GR-VPX-GR740, this signal must be driven low by the mezzanine board, since the PCI interface between GR740 and the mezzanine board is a point to point interface. The GNT can be permanently tied to low in the mezzanine board to let GR740 always initiate the PCI communication.
  - The PCI clock must be provided from the mezzanine board.
  - The PCI specification requires that the following system signals are pulledup PCI\_FRAME, PCI\_STOP, PCI\_PAR, PCI\_IRDY, PCI\_PERR, PCI\_TRDY, PCI\_SERR and PCI\_DEVSEL. These signals must be pulled up in the mezzanine board.

#### 4.7 GPIO

30 general purpose I/O pins of the GR740 processor are used in this design for various signalling purposes as listed in the table below.

These General purpose I/O pins are 3.3V LVCMOS voltage levels.

- *GPIO* refers to 'General Purpose I/O pins' of the GR740 processor, accessed through the GPIO1 registers (0xFF902000 0xFF9020FF) of the GR740.
- *GPIO2* refers to 'General Purpose I/O pins' of the GR740 processor, accessed through the GPIO2 registers of the GR740.
- *FPIO* refers to 'Front Panel I/O' pins which are connected to the front panel connector J5
- *MPIO* refers to 'Mezzanine I/O pins' which are signals connecting between the GR740 and the mezzanine connector.
- *BPIO* refers to 'Back Plane I/O pins' which allows some signals to be used for signalling between slots on the back panel, depending on various switches as listed in the table.



No over-voltage protection components are included on the front panel FPIO signals of the *GR-VPX-GR740 Board* board. The signals are connected from the microprocessor via 330 Ohm resistors, to the front panel. The limiting resistors provide a basic level of protection case of unintended S/C at the input pins. However, care must be taken to ensure that any external circuitry connected does not exceed the allowable voltage limits for the input/output pins.

| GR740 Pin | Signal Name | Function                    |
|-----------|-------------|-----------------------------|
| GPIO0     | PPS_GR740   | PPS input to GR740          |
| GPIO1     | MPIO1       | GPIO to mezzanine connector |
| GPIO2     | MPIO2       | GPIO to mezzanine connector |
| GPIO3     | MPIO3       | GPIO to mezzanine connector |
| GPIO4     | MPIO4       | GPIO to mezzanine connector |
| GPIO5     | MPIO5       | GPIO to mezzanine connector |

| GR740 Pin | Signal Name | Function                    |
|-----------|-------------|-----------------------------|
| GPIO6     | MPIO6       | GPIO to mezzanine connector |
| GPIO7     | MPIO7       | GPIO to mezzanine connector |
| GPIO8     | MPIO8       | GPIO to mezzanine connector |
| GPIO9     | MPIO9       | GPIO to mezzanine connector |
| GPIO10    | FPIO0       | Front panel J5              |
| GPIO11    | FPIO1       | Front panel J5              |
| GPIO12    | FPIO2       | Front panel J5              |
| GPIO13    | FPIO3       | Front panel J5              |
| GPIO14    | FPIO4       | Front panel J5              |
| GPIO15    | FPIO5       | Front panel J5              |

Table 3: Functions assigned to GPIO signals of GR740

| Pin      | Function                                    | Connects to                                                                                                                                                                                                                                            |  |
|----------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| GPIO2_0  | BPIO0                                       | SCN-PL1N-SE-UD1 if BPIO6='0' and S26 = (C-3) $SCN-PL1N-FP-UD1$ if BPIO6='0' and S26 = (C-1) $SCN-PL1R-SE-UD1$ if BPIO6='1' and S34 = (C-3) $SCN-PL1R-FP-UD1$ if BPIO6='1' and S34 = (C-1)For Switch configuration (C-3) and (C-1), refer section 5.1.1 |  |
| GPIO2_1  | BPIO1                                       | SCN-PL1N-SE-UD2 if BPIO6='0' and S27 = (C-3)<br>SCN-PL1N-FP-UD2 if BPIO6='0' and S27 = (C-1)<br>SCN-PL1R-SE-UD2 if BPIO6='1' and S35 = (C-3)<br>SCN-PL1R-FP-UD2 if BPIO6='1' and S35 = (C-1)                                                           |  |
| GPIO2_2  | Not available as GPIO                       |                                                                                                                                                                                                                                                        |  |
| GPIO2_3  | Not available as GPIO                       |                                                                                                                                                                                                                                                        |  |
| GPIO2_4  | Not available as GPIO                       |                                                                                                                                                                                                                                                        |  |
| GPIO2_5  | Not available as GPIO                       |                                                                                                                                                                                                                                                        |  |
| GPIO2_6  | BPIO2                                       | <i>SCN-PL1N-SE-UD3</i> if BPIO6='0' and S28 = (C-3)<br><i>SCN-PL1N-FP-UD3</i> if BPIO6='0' and S28 = (C-1)<br><i>SCN-PL1R-SE-UD3</i> if BPIO6='1' and S36 = (C-3)<br><i>SCN-PL1R-FP-UD3</i> if BPIO6='1' and S36 = (C-1)                               |  |
| GPIO2_7  | BPIO3                                       | <i>SCN-PL1N-SE-UD4</i> if BPIO6='0' and S29 = (C-3)<br><i>SCN-PL1N-FP-UD4</i> if BPIO6='0' and S29 = (C-1)<br><i>SCN-PL1R-SE-UD4</i> if BPIO6='1' and S37 = (C-3)<br><i>SCN-PL1R-FP-UD4</i> if BPIO6='1' and S37 = (C-1)                               |  |
| GPIO2_8  | Not available as GPIO                       |                                                                                                                                                                                                                                                        |  |
| GPIO2_9  | Not available as GPIO                       |                                                                                                                                                                                                                                                        |  |
| GPIO2_10 | Not available as GPIO                       |                                                                                                                                                                                                                                                        |  |
| GPIO2_11 | BPIO4                                       | <i>SCN-PL1N-SE-UD5</i> if BPIO6='0' and S30 = (C-3)<br><i>SCN-PL1N-FP-UD5</i> if BPIO6='0' and S30 = (C-1)<br><i>SCN-PL1R-SE-UD5</i> if BPIO6='1' and S38 = (C-3)<br><i>SCN-PL1R-FP-UD5</i> if BPIO6='1' and S38 = (C-1)                               |  |
| GPIO2_12 | FPIO6 if SP3T switch<br>S23 is set to (C-3) | Front panel J5                                                                                                                                                                                                                                         |  |
|          | BPIO5 if SP3T switch<br>S23 is set to (C-1) | <i>SCN-PL1N-SE-UD6</i> if BPIO6='0' and S31 = (C-3)<br><i>SCN-PL1N-FP-UD6</i> if BPIO6='0' and S31 = (C-1)<br><i>SCN-PL1R-SE-UD6</i> if BPIO6='1' and S39 = (C-3)<br><i>SCN-PL1R-FP-UD6</i> if BPIO6='1' and S39 = (C-1)                               |  |
| GPIO2_13 | FPIO7 if SP3T switch<br>S24 is set to (C-3) | Front panel J5                                                                                                                                                                                                                                         |  |
|          | BPIO6 if SP3T switch<br>S24 is set to (C-1) | BPIO6 controls                                                                                                                                                                                                                                         |  |
| GPIO2_14 | Not available as GPIO                       |                                                                                                                                                                                                                                                        |  |
| GPIO2_15 | Not available as GPIO                       |                                                                                                                                                                                                                                                        |  |

Table 4: Functions assigned to GPIO2 signals of GR740

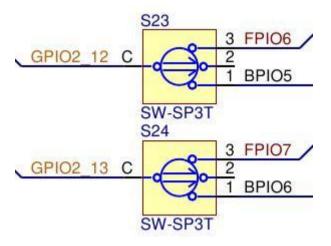



Figure 4-7: Configuration option for switch S23 and S24

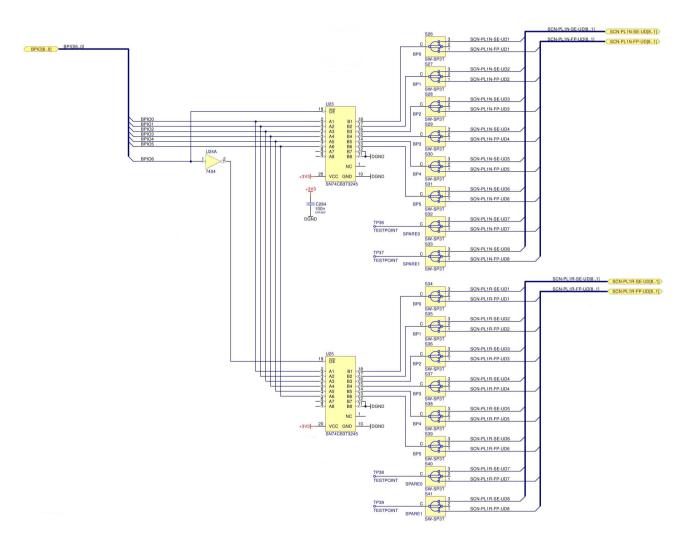



Figure 4-8: Configuration option for switch S27 to S41

#### 4.8 Debug Support Unit Interfaces

Program download and debugging to the GR740 processor is performed using the GRMON Debug Monitor tool from Cobham Gaisler ([RD2]). The GR740 processor provides an interface for Debug and control of the processor by means of a host terminal via its DSU interface, as represented in Figure 4-9.

Three control signals and a data connection from the Debug Support Unit interface to the processor:

DSUEN: This signal is connected to SP3T switch S5. When the switch is set to '1' DSU debugging is enabled.

The signal can be pulled low with switch S5 to disable the DSU. Switching off the DSU also sets the clock gating to off for all the debug interfaces (SpaceWire, JTAG and Ethernet interfaces connected to debug subsystem).

- DSUBRE: The front panel push-button switch pulls the DSUBRE signal high to force the processor to halt and enter DSU mode.
- DSUACT: When the processor is halted, the front panel LED will illuminate

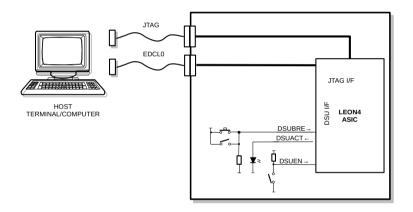



Figure 4-9: Debug Support Unit connections

To communicate with the processor, two possibilities for the data connection to the processor are provided:

JTAG-DCL JTAG Debug Communication Link (6 pin connector header J7 or using the FTDI interface connector J8 if the jumpers JP8 1-2,3-4,5-6 and 7-8 are installed).

EDCL Ethernet Debug Communication Link (front panel RJ45 connector J3) For more information, please refer to [RD2].

#### 4.9 Oscillators and Clock Inputs

The oscillator and clock scheme for the *GR-VPX-GR740 Board* Board is shown in Figure 4-10. On this board, all oscillators are soldered to the PCB.

A single 50 MHz oscillator is buffered and split to drive the following clocks:

- SYS\_CLK of GR740
- SPW\_CLK of GR740
- MEM\_CLK of GR740
- FPGA\_CLK auxiliary clock provided to Mezzanine connector

A dedicated 20 MHz oscillator provides the MIL1553 clock for the GR740.

The *GR740* generates the *SD\_CLK* for the SDRAM using internal logic.

For more details of the internal PLL structure and clock gating features of the *GR740*, please refer to the Data Sheet and User Manual of GR740.

A dedicated 25 MHz oscillator provides an optional clock for the REF\_CLK output to the backplane. Alternatively, the REF\_CLK output can instead be configured with a jumper to be generated by the FPGA on the Mezzanine. This clock output is converted to a differential LVDS output.

The AUX\_CLK is a differential LVDS output which can be generated either as a copy of the 1PPS input pulse, or via a jumper from an output of the FPGA on the mezzanine.

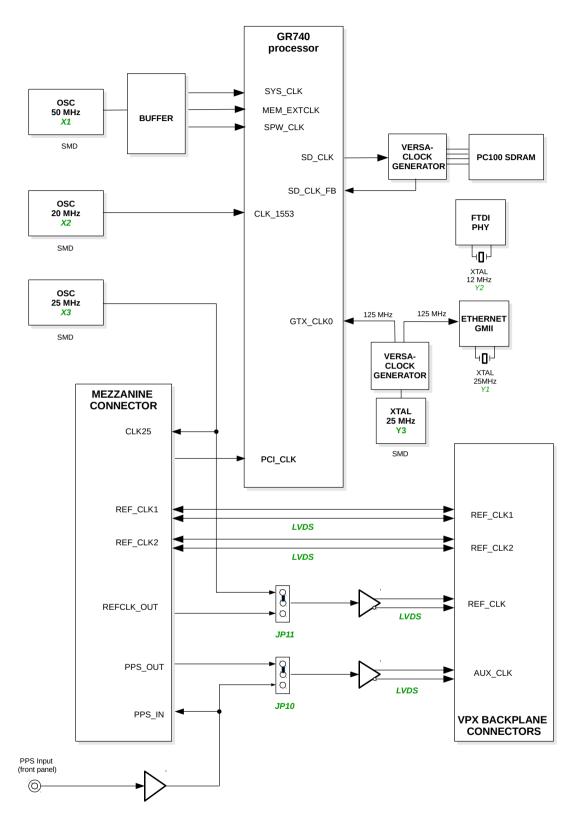



Figure 4-10: Board level Clock Distribution Scheme – GR-VPX-GR740

#### 4.10 **Power Supply and Voltage Regulation**

The power configuration scheme implemented on the *GR-VPX-GR740* board is represented in Figure 4-11.

Power at a nominal input voltage of +12V can be provided from the VS1 input connections of the backplane, or in stand-alone mode from a dedicated 2-pin header on the board.

On-board 5A DCDC buck regulators (*TI*, *TPS54527DDA*) generate the following voltages:

- +3.3V (VIO for GR740 and peripherals)
- +2.5V (VIO for GR740-LVDS)
- +1.2V (Vcore for GR740)

These regulators accept a wide input range from 5V to 15V.

For the board, the nominal supply input is considered to be +12V, but in stand alone operation can also be powered from a +5V supply. The maximum limit is +14.5V due to the 15V transient protection diode at the input.

The initial design considered an output current of 2A on each output. However, the Buck regulators and components are dimensioned for a capability of 5A, to provide margin.

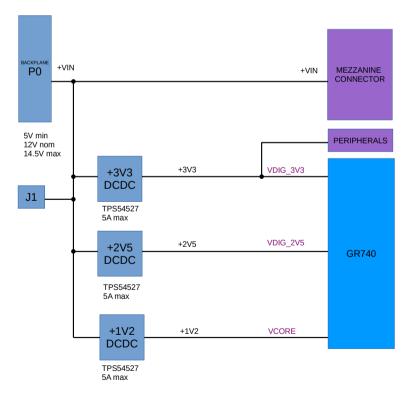



Figure 4-11: Power Regulation Scheme – GR-VPX-GR740

The mezzanine board can receive power at a nominal input voltage of +12V provided from the 12POV pins of the mezzanine connector.

#### 5 Setting Up and Using the Board

The board is provided with a default configuration set by bootstrap settings.

For additional information, refer to [RD1], and for information about the Bootstrap signals, refer to section 5.1.

To operate the board stand alone on the bench top, install the power configuration jumpers appropriately, and a power supply in the range +5V to +12V to the board connector J1.



ATTENTION! To prevent damage to board, please ensure that the Figure 4-11 correct power supply voltage and polarity is used with the board.

Do not exceed +14.5V at the power supply input, as this may damage the board.

The PWR LED on the front panel should be illuminated indicating that the power supply is present and the board is generating the tit requires

supply voltages that it requires.

To perform program download and software debugging on the hardware it is necessary to use the *Cobham Gaisler GRMON3* debugging software, installed on a host PC (as represented in Figure 4-9). Please refer to the GRMON3 documentation for the installation of the software on the host PC (Linux or Windows), and for the installation of the associated hardware dongle.

To perform software download and debugging on the processor, a link from the Host computer to the DSU interface of the board is necessary. As described in section 4.8 this is achieved via the FTDI USB interface.

Program download and debugging can be performed in the usual manner with GRMON3. More information on the usage, commands and debugging features of GRMON3, is given in the GRMON3 Users Manuals and associated documentation, [RD2].

#### 5.1 Switches and Bootstrap Signals

A number of features of the board have configuration options which need to be set correctly in order for the boards to operate correctly.

This includes:

- GR740 Bootstrap signals
- VPX Backplane Configuration switches

These signals and their meaning are listed below, together with the suggested default configuration

#### 5.1.1 SP3T Switch description and configuration properties

As shown in Figure 5-1 below the SP3T switches can be set in three different positions.

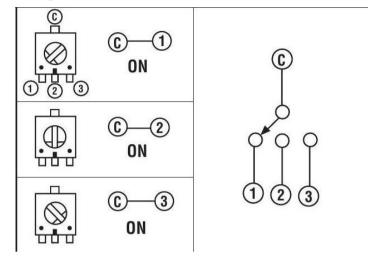



Figure 5-1: SW-SP3T configuration options and schematics.

The image below provides the mapping between the schematics and a switch implemented onboard.



*Figure 5-2: SW-SP3T mapping between schematics and a switch onboard* 

There are forty SP3T configuration switches available onboard. The switch schematics and mapping provided in Figure 5-2 remains the same on all those switches, irrespective of the position or the naming convention of the switch.

#### 5.1.2 GR740 Bootstrap Signals

The schematics below shows the configuration available for switch S1 to S22.

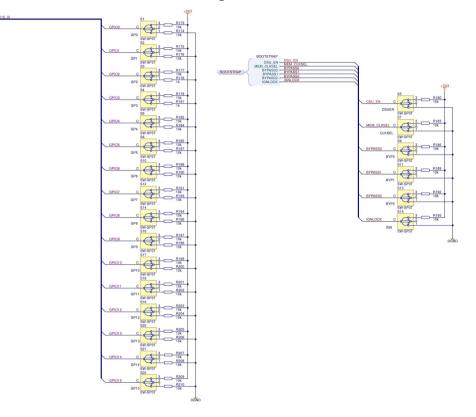



Figure 5-3: Configuration options for switch S1 to S22

These signals are set using the Single pole 3 position miniature switches. These switches can be set with a fine-bladed screwdriver. These 3 position switches have the possibility to set the signal value to 'pull-up' (='high') (C-3), 'float' (='undefined') (C-2), or 'pull-down (='low') (C-1).



Figure 5-4: GR740SBC Bootstrap Signals default configuration

| Signal     | Function                       |     | Default    |
|------------|--------------------------------|-----|------------|
| DSUEN      | Debug Support Unit Enable      | S5  | High (C-3) |
| MEM_CLKSEL | Select source for Memory clock | S7  | High (C-3) |
| BYPASS0    | PASS0 Bypass PLL 0             |     | Low (C-1)  |
| BYPASS1    | ASS1 Bypass PLL 1              |     | Low (C-1)  |
| BYPASS2    | Bypass PLL 2                   | S13 | Low (C-1)  |
| IGNLOCK    | Ignore PLL Lock status         | S15 | High (C-3) |

Table 5: GR740 Bootstrap Settings

| Signal | Function                 | Switch | Default    |
|--------|--------------------------|--------|------------|
| GPIO0  | EDCL LINK MACADDR Bit 0  | S1     | Low (C-1)  |
| GPIO1  | EDCL LINK MACADDR Bit 1  | S2     | High (C-3) |
| GPIO2  | EDCL LINK0 MACADDR Bit 2 | S3     | High (C-3) |
| GPIO3  | EDCL LINK0 MACADDR Bit 3 | S4     | Low (C-1)  |
| GPIO4  | EDCL LINK1 MACADDR Bit 2 | S6     | High (C-3) |
| GPIO5  | EDCL LINK1 MACADDR Bit 3 | S8     | Low (C-1)  |
| GPIO6  | SPW ROUTER INT MODE 0    | S10    | Low (C-1)  |
| GPIO7  | SPW ROUTER INT MODE 1    | S12    | Low (C-1)  |
| GPIO8  | EDCL LINK0 TRAFFIC       | S14    | High (C-3) |
| GPIO9  | EDCL LINK1 TRAFFIC       | S16    | High (C-3) |
| GPIO10 | PROM WIDTH               | S17    | Low (C-1)  |
| GPIO11 | SPW CLOCK GATE           | S18    | Low (C-1)  |
| GPIO12 | SPW ROUTER ID BIT 0      | S19    | Low (C-1)  |
| GPIO13 | SPW ROUTER ID BIT 1      | S20    | Low (C-1)  |
| GPIO14 | PROM EDAC                | S21    | Low (C-1)  |
| GPIO15 | PROM/IO                  | S22    | High (C-3) |

 Table 6: GR740 GPIO Bootstrap Settings

#### 5.1.3 Other configurable switches default settings

| Signal      | Function                                                 | Switch     | Default             |
|-------------|----------------------------------------------------------|------------|---------------------|
| GPIO2_12    | To select FPIO6 or BPIO5                                 | S23        | FPIO6<br>High (C-3) |
| GPIO2_13    | To select FPIO7 or BPIO6                                 | S24        | FPIO7<br>High (C-3) |
| BPIO 0 to 5 | See Table 4 Functions assigned to GPIO2 signals of GR740 | S26 to S41 | Float (C-1)         |

 Table 7: Other configurable switches default settings

#### 5.2 Jumper configurations

The default status of the Jumpers on the boards is as shown in Table 8. (Other configurations may be defined by the user).

#### 5.2.1 Default Setting of Jumpers – GR-VPX-GR740

| Jumper | Default Jumper Setting           | Comment                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JP1    | Installed                        | Remove jumper to disable writing to MRAM.                                                                                                                                                                                                                                                                                                                                                               |
| JP2    | Not installed                    | Install to write protect serial SPI Prom                                                                                                                                                                                                                                                                                                                                                                |
| JP3    | Connected to Front-Panel 1-2 3-4 | Connects front panel RESET and BREAK push button to JP3                                                                                                                                                                                                                                                                                                                                                 |
| JP4    | -                                | -                                                                                                                                                                                                                                                                                                                                                                                                       |
| JP5    | Not installed                    | VC0-PROG, do not install for parameters to be loaded via I2C                                                                                                                                                                                                                                                                                                                                            |
| JP6    | Installed                        | VC0-CLKSEL; MEM_CLK_P and N generates SDCLK's                                                                                                                                                                                                                                                                                                                                                           |
| JP7    | Not installed                    | Install jumper for Watchdog signal to trigger reset                                                                                                                                                                                                                                                                                                                                                     |
| JP8    | 1-2 3-4 5-6 7-8                  | Connects ASIC JTAG to FTDI chip                                                                                                                                                                                                                                                                                                                                                                         |
| JP9    | 1-2 3-4 5-6 7-8                  | GR740 UART 0 and 1 connects to FTDI chip                                                                                                                                                                                                                                                                                                                                                                |
| JP10   | 1-2                              | An SMB connector is available on the front panel for PPS input. This signal is terminated with a 50 Ohm load and buffered. The buffered signal is connected to the <i>JP10 Jumper input (1)</i> and, via the mezzanine connector.                                                                                                                                                                       |
|        |                                  | This jumper when configured as 1-2 the PPS from the external input is passed to <i>GR740 processor</i> and also to the backplane (as a differential signal on the AUXCLK_OUT pins).                                                                                                                                                                                                                     |
|        |                                  | This jumper when configured as 2-3 the PPS from the external input is passed to mezzanine connector and the output from the mezzanine connector (PPS_OUT) is connected with the <i>GR740 processor</i> and also to the backplane (as a differential signal on the AUXCLK_OUT pins). This setting allows the PPS to be processed by the Mezzanine board if such implementation is required for the user. |
| JP11   | 1-2                              | An onboard oscillator generates a 25 MHz clock. This signal is connected to the <i>JP11 Jumper input (1)</i> and, via the mezzanine connector to the mezzanine connector.                                                                                                                                                                                                                               |
|        |                                  | This jumper when configured as 1-2 the clock is passed to the backplane (as a differential signal on the REF_CLK_P and N pins).                                                                                                                                                                                                                                                                         |
|        |                                  | This jumper when configured as 2-3 the clock is passed to mezzanine connector and the output from the mezzanine is connected to the backplane (as a differential signal on the REF_CLK_P and N pins).                                                                                                                                                                                                   |
| JP12   | Installed                        | Option to provide 3V3 from Main Board to Mezzanine                                                                                                                                                                                                                                                                                                                                                      |
| JP13   | Not installed                    | Configuration options for Versaclock PLL ranges                                                                                                                                                                                                                                                                                                                                                         |
| JP14   | Not installed                    | VC1-PROG, do not install for parameters to be loaded via I2C                                                                                                                                                                                                                                                                                                                                            |
| JP15   | Installed                        | VC1-CLKSEL; XTAL generates 25MHZ clock                                                                                                                                                                                                                                                                                                                                                                  |

Table 8: Default Setting of Jumpers – GR-VPX-GR740

### 6 Interfaces and Configuration



— Figure 6-1: Front Panel View (pins 1 marked red) GR-VPX-GR740-BOARD-UM, Nov 2020, Version 1.4 <u>www.cobham.com/gaisler</u>

#### Note in Figure 6-1 the SpW and SpFI are from the mezzanine board which are not part of the GR-VPX-GR740 base board.

| Name | Function      | Туре                 | Description                                                     |
|------|---------------|----------------------|-----------------------------------------------------------------|
| J1   | POWER_IN      | MOLEX_6410_2pin      | DC power input connector (only to be used in Stand-alone usage) |
| J2   | MIL1553       | D9-Male              | MIL-1553 dual interface                                         |
| J3   | ETH           | RJ45                 | GB Ethernet Connector                                           |
| J4   | PPS           | SMB                  | Pulse-Per-Second Input                                          |
| J5   | FPIO          | 10 pin 0.1" Header   | Front panel Input/Output                                        |
| J6   | SODIMM        | 144 pin SODIMM conn. | SDRAM interface                                                 |
| J7   | JTAG-GR740    | 6 pin 0.1" header    | GR740 JTAG interface                                            |
| J8   | FTDI-Serial   | Micro-USB            | FTDI USB to serial interface – JTAG & UART                      |
| J9   | Mezzanine     | FMC-HPC-400 pin      | Mezzanine interface                                             |
| J10  | SPW-HDR       | MDM_9S               | SpaceWire interface                                             |
| J11  | FPGA-program  | 5x2 pin 0.1" Header  | Programming header for FPGA                                     |
| P0   | VPX Backplane | TE 1410189-3, Plug   | VPX Backplane Connector VITA46, 56 pos.                         |
| P1   | VPX Backplane | TE 1410187-3, Plug   | VPX Backplane Connector VITA46, 112 pos.                        |
| P2   | VPX Backplane | TE 1410187-3, Plug   | VPX Backplane Connector VITA46, 112 pos                         |
| Р3   | VPX Backplane | TE 1410187-3, Plug   | VPX Backplane Connector VITA46, 112 pos                         |
| P4   | VPX Backplane | Not fitted           |                                                                 |
| P5   | VPX Backplane | TE 1410187-3, Plug   | VPX Backplane Connector VITA46, 112 pos                         |
| P6   | VPX Backplane | Not fitted           |                                                                 |

#### 6.1 List of Connectors – GR-VPX-GR740

Table 9: List of Connectors – GR-VPX-GR740

#### 6.2 List of Connectors – GR-VPX-SPW-MEZZ

| Name | Function | Туре   | Description                             |
|------|----------|--------|-----------------------------------------|
| J8   | SPW-1    | MDM_9S | SpaceWire interface GR740 ROUTER PORT 2 |
| J9   | SPW-0    | MDM_9S | SpaceWire interface GR740 ROUTER PORT 1 |

Table 10: List of Connectors – GR-VPX-SPW-MEZZ

| Pin | Name | Comment                                  |  |
|-----|------|------------------------------------------|--|
| 1   | DGND | Ground                                   |  |
| 2   | +VIN | Power Input +5V to +12V, typically TBD A |  |

Table 11: J1 POWER – External Power Connector

| Pin |   | Name   | Comment        |
|-----|---|--------|----------------|
| 1   |   | BUS_0  | BUS_0 positive |
|     | 6 | GND    | Ground         |
| 2   |   | BUS_0B | BUS_0 negative |
|     | 7 |        | No connect     |
| 3   |   |        | No connect     |
|     | 8 |        | No connect     |
| 4   |   | BUS_1  | BUS_1 positive |
|     | 9 | GND    | Ground         |
| 5   |   | BUS_1B | BUS_1 negative |

#### Table 12: J2 Dual MIL-STD-1553 interface connections

| Pin | Name  | Comment           |
|-----|-------|-------------------|
| 1   | TPFOP | Output +ve        |
| 2   | TPFON | Output -ve        |
| 3   | TPFIP | Input +ve         |
| 4   | TPFOC | Output centre-tap |
| 5   |       | No connect        |
| 6   | TPFIN | Input -ve         |
| 7   | TPFIC | Input centre-tap  |
| 8   |       | No connect        |

#### Table 13: J3 RJ45-ETHERNET Connector

| Pin Name Comment |                            | Comment                                |  |
|------------------|----------------------------|----------------------------------------|--|
| INNER            | +IN                        | Inner Pin, Pulse Per Second,+3V3 logic |  |
| OUTER            | JTER DGND Outer Pin Return |                                        |  |

Table 14: J4 PPS Input

| <b>FUNCTION</b> | CONNECTOR PIN | <b>FUNCTION</b> |
|-----------------|---------------|-----------------|
| FPIO0           | 1 🔳 🗌 2       | FPIO1           |
| FPIO2           | 3 🗌 🗌 4       | FPIO3           |
| FPIO4           | 5 🗌 🗌 6       | FPIO5           |
| FPIO6           | 7 🗌 🗌 8       | FPIO7           |
| Opt. +3V3       | 9 10          | DGND            |

Table 15: J5: Front Panel Input/Output pins

| <b>FUNCTION</b>     | ASIC PIN | CONNE      | CTOR PIN   | ASIC PIN | <b>FUNCTION</b>    |
|---------------------|----------|------------|------------|----------|--------------------|
| DGND                |          | 1          | 2          |          | DGND               |
| DQ0                 |          | 3          | 4          |          | DQ24               |
| DQ1                 |          | 5          | 6          |          | DQ25               |
| DQ2                 |          | 7          | 8          |          | DQ26               |
| DQ3                 |          | 9          | 10         |          | DQ27               |
| +3.3V               |          | 11         | 12         |          | +3.3V              |
| DQ4                 |          | 13         | 14         |          | DQ28               |
| DQ5                 |          | 15         | 16         |          | DQ29               |
| DQ6                 |          | 17         | 18         |          | DQ30               |
| DQ7<br>DGND         |          | 19<br>21   | 20<br>22   |          | DQ31<br>DGND       |
| SDDQM0              |          | 21         | 22         |          | SDDQM2             |
| SDDQM0<br>SDDQM1    |          | 25         | 24         |          | SDDQM4             |
| +3.3V               |          | 27         | 28         |          | +3.3V              |
| A2                  |          | 29         | 30         |          | A5                 |
| A3                  |          | 31         | 32         |          | A6                 |
| A4                  |          | 33         | 34         |          | A7                 |
| DGND                |          | 35         | 36         |          | DGND               |
| DQ8                 |          | 37         | 38         |          | DQ32               |
| DQ9                 |          | 39         | 40         |          | DQ33               |
| DQ10                |          | 41<br>43   | 42<br>44   |          | DQ34               |
| DQ11<br>+3.3V       |          | 45<br>45   | 44<br>46   |          | DQ35<br>+3.3V      |
| DQ12                |          | 47         | 40         |          | DQ36               |
| DQ13                |          | 49         | 50         |          | DQ37               |
| DQ14                |          | 51         | 52         |          | DQ38               |
| DQ15                |          | 53         | 54         |          | DQ39               |
| DGND                |          | 55         | 56         |          | DGND               |
| nc                  |          | 57         | 58         |          | nc                 |
| nc                  |          | 59         | 60         |          | nc                 |
| SDCLK0              |          | 61         | 62         |          | SDCKE0             |
| +3.3V               |          | 63         | 64         |          | +3.3V              |
| SDRASN<br>SDWEN     |          | 65<br>67   | 66<br>68   |          | SDCASN<br>SDCKE1   |
| SDCSN0              |          | 69         | 70         |          | A17                |
| SDCSN1              |          | 71         | 70         |          | A14                |
| nc                  |          | 73         | 74         |          | SDCLK1             |
| DGND                |          | 75         | 76         |          | DGND               |
| nc                  |          | 77         | 78         |          | nc                 |
| nc                  |          | 79         | 80         |          | nc                 |
| +3.3V               |          | 81         | 82         |          | +3.3V              |
| DQ16<br>DQ17        |          | 83<br>85   | 84<br>86   |          | DQ40<br>DQ41       |
| DQ18                |          | 87         | 88         |          | DQ41<br>DQ42       |
| DQ19                |          | 89         | 90         |          | DQ43               |
| DGND                |          | 91         | 92         |          | DGND               |
| DQ20                |          | 93         | 94         |          | DQ44               |
| DQ21                |          | 95         | 96         |          | DQ45               |
| DQ22                |          | 97         | 98         |          | DQ46               |
| DQ23                |          | 99         | 100        |          | DQ47               |
| +3.3V               |          | 101        | 102        |          | +3.3V              |
| A8                  |          | 103        | 104        |          | A9                 |
| A10<br>DGND         |          | 105<br>107 | 106<br>108 |          | A15 (SBA0)<br>DGND |
| A11                 |          | 109        | 110        |          | A16 (SBA1)         |
| A12                 |          | 111        | 112        |          | A13                |
| +3.3V               |          | 113        | 114        |          | +3.3V              |
| SDDQM2              |          | 115        | 116        |          | SDDQM5             |
| pulled high         |          | 117        | 118        |          | pulled high        |
| DGND                |          | 119        | 120        |          | DGND               |
| nc                  |          | 121        | 122        |          | nc                 |
| nc                  |          | 123<br>125 | 124<br>126 |          | nc                 |
| nc                  |          | 125        | 128        |          | nc<br>nc           |
| +3.3V               |          | 127        | 120        |          | +3.3V              |
| nc                  |          | 131        | 132        |          | nc                 |
| nc                  |          | 133        | 134        |          | nc                 |
| nc                  |          | 135        | 136        |          | nc                 |
| nc                  |          | 137        | 138        |          | nc                 |
| DGND                |          | 139        | 140        |          | DGND               |
| SDSDA / pulled high |          | 141        | 142        | SI       | DSCL / pulled high |
| +3.3V               |          | 143        | 144        |          | +3.3V              |

Table 16: J6: SDRAM SODIMM socket Pin-out

| Pin | Name  | Comment   |
|-----|-------|-----------|
| 1   | VJTAG | 3.3V      |
| 2   | DGND  | Ground    |
| 3   | TCK   | JTAG: TCK |
| 4   | TDO   | JTAG: TDO |
| 5   | TDI   | JTAG: TDI |
| 6   | TMS   | JTAG: TMS |

#### Table 17: J7 GR740 – JTAG Connector

| Pin | Name | Comment                  |  |
|-----|------|--------------------------|--|
| 1   | VBUS | +5V (from external host) |  |
| 2   | DM   | Data Minus               |  |
| 3   | DP   | Data Plus                |  |
| 4   | ID   | Not used                 |  |
| 5   | DGND | Ground                   |  |

Table 18: J8 USB Micro connector – FTDI Quad Serial Link

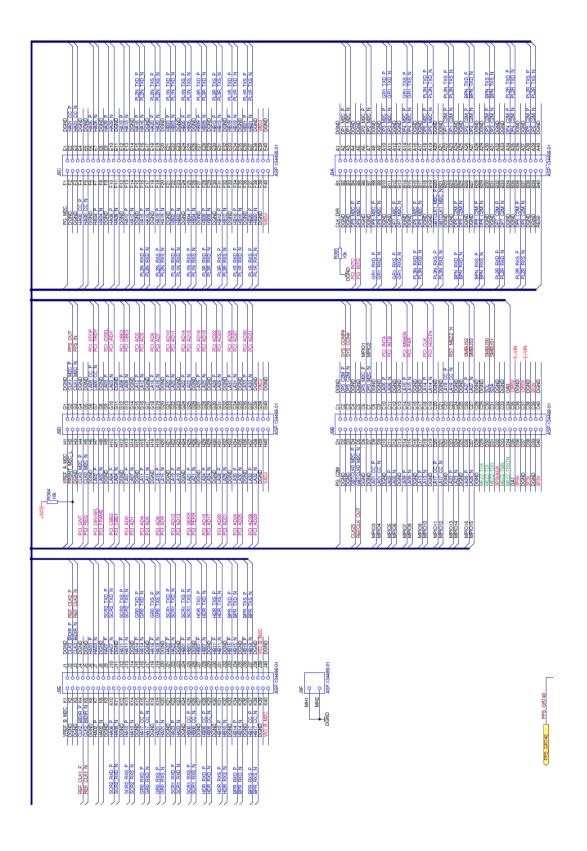



Table 19: J9 Mezzanine Connector – Female

| Pin |   | Name   | Comment        |  |
|-----|---|--------|----------------|--|
| 1   |   | DIN0+  | Data In +ve    |  |
|     | 6 | DIN0-  | Data In -ve    |  |
| 2   |   | SIN0+  | Strobe In +ve  |  |
|     | 7 | SIN0-  | Strobe In -ve  |  |
| 3   |   | SHIELD | Inner Shield   |  |
|     | 8 | SOUT0+ | Strobe Out +ve |  |
| 4   |   | SOUT0- | Strobe Out -ve |  |
|     | 9 | DOUT0+ | Data Out +ve   |  |
|     | 5 | DOUT0- | Data Out -ve   |  |

Table 20: J10 SPW-HDR interface connections

| Pin |    | Name    | Comment             |  |
|-----|----|---------|---------------------|--|
| 1   |    | F-TCK   | JTAG: TCK           |  |
|     | 2  | DGND    | Ground              |  |
| 3   |    | F-TDO   | JTAG: TDO           |  |
|     | 4  | nc      | no connect          |  |
| 5   |    | F-TMS   | JTAG: TMS           |  |
|     | 6  | VREF    | 3.3V                |  |
| 7   |    | VPUMP   | Programming Voltage |  |
|     | 8  | F-TRSTN | JTAG: TRSTN         |  |
| 9   |    | F-TDI   | JTAG: TDI           |  |
|     | 10 | DGND    | Ground              |  |

Table 21: J11 FPGA– JTAG Connector

| Name | Function    | Description                                               |
|------|-------------|-----------------------------------------------------------|
| X1   | MAIN-OSC    | 50 MHz (soldered) for SYS-CLK, SPW-CLK, MEM-CLK, FPGA-CLK |
| X2   | MIL1553-CLK | 20 MHz oscillator (soldered)                              |
| X3   | CLK25       | 25 MHz oscillator (soldered) to Mezzanine connector       |
| Y1   | XTAL-25MHz  | 25 MHz crystal (soldered) for Ethernet PHY                |
| Y2   | XTAL-12MHz  | 12 MHz crystal (soldered) for FTDI interface              |
| Y3   | XTAL-25MHz  | 25 MHz crystal (soldered) for Clock generator             |

#### 6.3 List of Oscillators, Switches and LED's - GR-VPX-GR740

#### Table 22: List and definition of Oscillators and Crystals

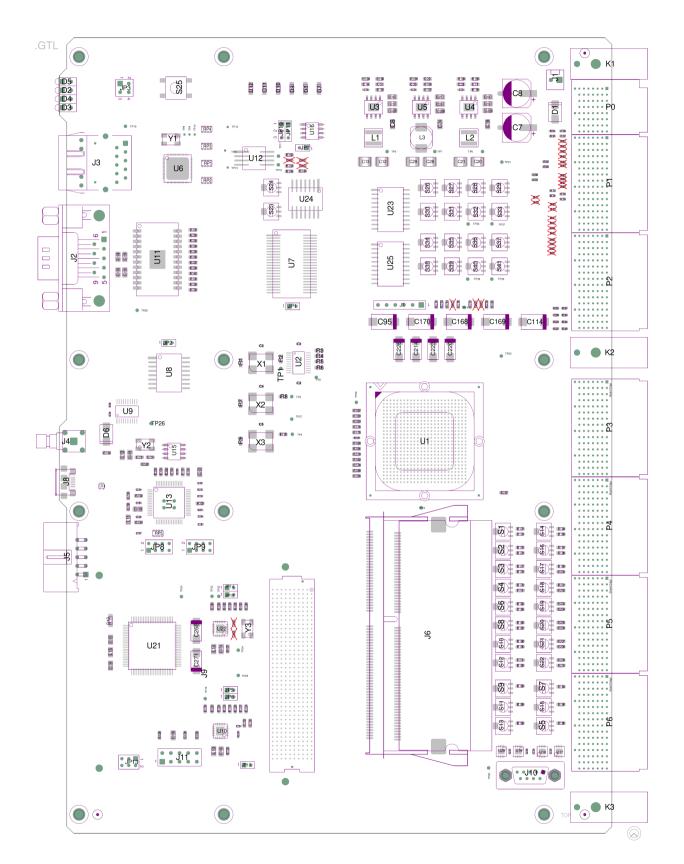
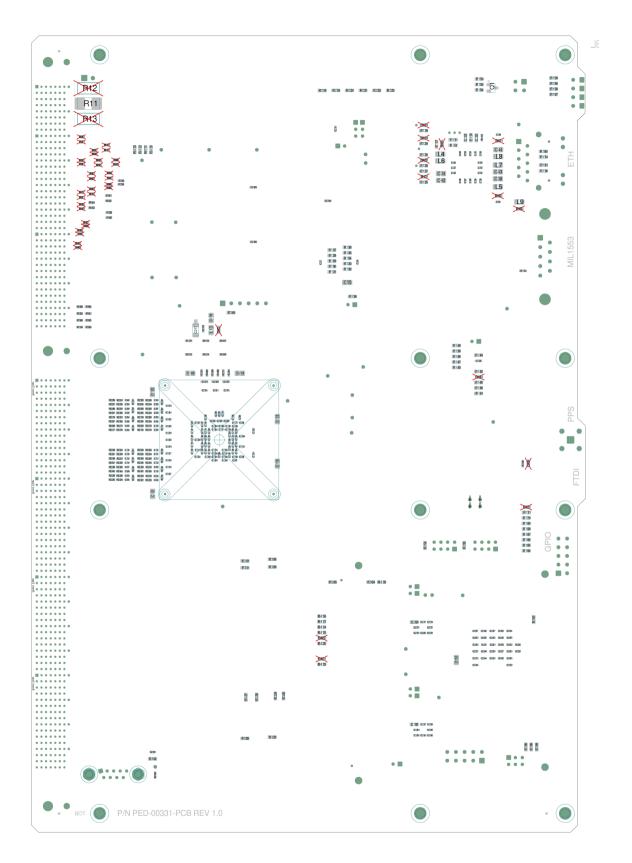

| Name | Function | Description             |
|------|----------|-------------------------|
| D2   | POWER    | 3.3V power good         |
| D3   | ERR      | GR740 ERRORN            |
| D4   | WD       | GR740 Watchdog          |
| D5   | DSUACT   | GR740 DSU Active        |
| D7   | PLLLOCK0 | GR740 PLL lock status 0 |
| D8   | PLLLOCK1 | GR740 PLL lock status 1 |
| D9   | PLLLOCK2 | GR740 PLL lock status 2 |
| D10  | PLLLOCK3 | GR740 PLL lock status 3 |
| D11  | PLLLOCK4 | GR740 PLL lock status 4 |
| D12  | PLLLOCK5 | GR740 PLL lock status 5 |
| D13  | FP0      | FPGA Status             |

Table 23: List and definition of PCB mounted LED's


| Name                                        | Function   | Description                                          |
|---------------------------------------------|------------|------------------------------------------------------|
| S1-S4, S6, S8,<br>S10, S12,<br>S14, S16-S22 | GPIO0-15   | SP3T – sets GPIO[0-15] to pull-up, float, pull-down  |
| S5                                          | DSU Enable | SP3T – sets DSUEN to pull-up, float, pull-down       |
| S7                                          | MEM-CLKSEL | SP3T – sets MEM-CLKSEL to pull-up, float, pull-down  |
| S9                                          | BYPASS0    | SP3T – sets PLL BYPASS0 to pull-up, float, pull-down |
| S11                                         | BYPASS1    | SP3T – sets PLL BYPASS1 to pull-up, float, pull-down |
| S13                                         | BYPASS2    | SP3T – sets PLL BYPASS2 to pull-up, float, pull-down |

| Name    | Function | Description                                               |
|---------|----------|-----------------------------------------------------------|
| S15     | IGNLOCK  | SP3T – sets IGLOCK to pull-up, float, pull-down           |
| S23     | GPIO2_12 | SP3T selects – GPIO2_12 source                            |
| S24     | GPIO2_13 | SP3T selects – GPIO2_13 source                            |
| S25     | RESET    | Push Button Reset                                         |
| S26-S33 | BP0-BP5  | SP3T selects Backpanel IO signals – active when BP6 = '0' |
| S34-S41 | BP0-BP5  | SP3T selects Backpanel IO signals – active when BP6 = '1' |

Table 24: List and definition of Switches



#### Figure 6-2: GR-VPX-GR740 PCB Top View (extract from [RD4]



#### Figure 6-3: GR-VPX-GR740 PCB Bottom View (extract from [RD4]

### 7 Change Record

| Issue | Date       | Section / Page                                                | Description                                                                                                                   |
|-------|------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 0.0   | -          | All                                                           | Draft Issue                                                                                                                   |
| 1.0   | 2019-09-17 | Default Jumper values and Switch settings.                    | First Issue                                                                                                                   |
| 1.1   | 2020-04-29 | Updated section 4.7<br>GPIO section with more<br>information. | Second issue with updated details                                                                                             |
| 1.2   | 2020-08-18 | Major change                                                  | Removed the Mezzanine board details since it is not part of the delivered GR-VPX-GR740 board product.                         |
| 1.3   | 2020-10-09 | Fixed Minor typos                                             | The mezzanine connector on board is of type Female.<br>PCI_HOSTN is pulled High on board the GR-VPX-GR740.                    |
| 1.4   | 2020-11-06 | Section 4.7, 4.8 and 5.1.1                                    | The DSUEN switch named correctly as S5 in section 4.8.<br>Clear description of SP3T switches, updated section 4.7 and 5.1.1.  |
|       |            | Section 4.1                                                   | Details of the new mezzanine board (GR-VPX-SPW-MEZZ which provides two SpaceWire interfaces in the Front panel) are included. |
|       |            | Table 8                                                       | Jumper JP12 installed by default, to to provide 3V3 from Main<br>Board to Mezzanine                                           |

Cobham Gaisler AB Kungsgatan 12 411 19 Göteborg Sweden www.cobham.com/gaisler sales@gaisler.com T: +46 31 7758650 F: +46 31 421407

Cobham Gaisler AB, reserves the right to make changes to any products and services described herein at any time without notice. Consult Cobham or an authorized sales representative to verify that the information in this document is current before using this product. Cobham does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by Cobham; nor does the purchase, lease, or use of a product or service from Cobham convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Cobham or of third parties. All information is provided as is. There is no warranty that it is correct or suitable for any purpose, neither implicit nor explicit.

Copyright © 2020 Cobham Gaisler AB