Bare-C Cross-Compiler

BCC

BCC User's Manual

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | G6teborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table of Contents

O [L oo (8 1o o PP POPPPTRRPPPPN 7
S o o PP TPPUPRT 7
L2, INSEATBIION oot et ettt ettt et eaa e aee 7

1.2.0. HOSE FEQUITEMENTS ...ttt ettt et e e et e e et eeeaaes 7
L.2.2. LENUX oottt e et 7
L.2.3 WINOOWS oottt ettt e et e et e e e e et e e e e aaa s 7
1.3, Contents Of /OPL/DCC-2.2.4-0CC ..vuneeiii ettt 8
O =T O O (o - TP TUPPPTTRPPPTN 8
1.5, DOCUMENTALION ...eeeieiee ettt ettt e e et e e et r e e e et e e e et e e e e naaeeas 9
1.6. Toolchain source code diStribULION oouueeiiiii e 9
1.6.1. BCC source code inStallalion coeeuuiiiiiiieeeii e 9
1.6.2. BUITAING oeeeeieieeii ettt ettt 9
S ¥ o] o o AP P PP TPT PR 10

2. USING BCOC oottt et e e et e e e e e eaa e aen 11
2.1. General development FIOW iiii e 11
2.2. COMPILES OPLIONS ettt e e e et et e et b e e e ab e e e b s 11

2.2.1. sparc-gaisler-elf-geC OPtiONS coeuuiiiiiiii e 11

2.2.2. sparc-gaiser-elf-clang OptioNS iiiiiiiiieiiii e 12
2.3. Compiling BCC @pPliCaliONS uuiiiiiiieieii ettt ettt e e eeees 12
2.4. Foating-point CONSIAEIALONS ceuuiiiiiiiiee ettt 12
2.5. LEON SPARC V8 INSIIUCLIONS cieeiiieieiiieeeeitis e ettt ettt e et e e e e e 12
2.6. Multiply and accumulate INSLIUCHIONSccuuuiiiiiii e 13
2.7. Single register window model (Flat)uiiiiiiii 13
2.8, REJISIEN USBOE .eevtueiiiii ettt ettt ettt ettt e ettt et bbbt e e 13
2.9. SINGIE VECION traPPING eeetteeeiiti ettt ettt ettt ettt e ettt e et e e et e e e ee e e e eab e e ennen s 13
2.10. MEMONY OFQANIZAIION ..uuiieeeei et ettt ettt et e et e et et e et et e e e e et e e e eaa s 13
2.11. BCC Board SUPPOIt PaCKBOES ceueiieiiiiiiei ettt 14
2.12. Peripheral driver lIDrary ..o 14
213, MUITIPIOCESSING ... eeeetieeeetti ettt e ettt e e et e e ettt e e et e e et et e e et e b e e e et b e e e e et e e e e ena s 14
2.14. Debugging With GDB ciiiiiieiiii et 15

2.14.1. Debug information CONSIAEralioNS viieuinieiiiiii e 15
205, EXBIMPIES ottt 15

2.15.1. Target SPECIfiC EXAMPIES ..ooeeiiieii e 16
2.16. Creating a bootable ROM IMBOES iieiiiiiiiiii ettt 16

3. LLVM based tO0IChAIN ..ot 17
130 W [L oo (8o 1o o R PP P TP 17
3.2. BCC LLVM/CIANG tO0IS .. ettt e et e e s 17

4. C Standard [Orary ..o e 18
AL Bl 1O e e 18
4.2, TIME FUNCLIONS .ottt e ettt e e et et e e e e et e e e ee bt aeeeeaaaeaees 18
4.3. Dynamic memory allOCEHON couuuiiiiiiii e 18
4.4. AtOMIC tyPes and OPEIGLHONS coouuuieiiii ettt et e e e 18
A5, NEWID NBNO ..t et 18

B B IrarY e e 19
T L U L o PP PPN 19
B2, CONS0I e APl o e 19
R R N 107 g . PP P PP PPPPTIN 19

5.3.1. Interrupt based tiMEr SEIVICE ...ciiiri e 19
B4, CaChe CONMOl APl o e et ettt e e et e ettt e e e e eea 20
5.5, BUS BCCESS APl e 20
5.6. U control/status register @CCESS APL ui i e 21
5.6.1. ProCessor State REJISIEN .o.vuuiiiiiiii et 21
5.6.2. Trap Base REGISIEN ..oouuiiiiiii e 22
5.6.3. ProCESSOr POWE-0OWIN ...iiiiteiitti ettt ettt e e et e et e e et eeeeae s 22
5.7, FPU COMEXt APl e 23
BB, THAD APl e et 23
5.8.1. Single vector trapping (SVT) ooeuu ittt 24
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Géteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 2

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

D0, IO TUDE A Pl e e 25
5.9.1. Interrupt disable and enable ..o 25
5.9.2. Interrupt SOUrCE MASKIMQ ..uvvueeeeeeieet e eete e et e et e ete e e e e e e e e en e e reanseaneetneenaaannas 26
5.9.3. Clear and fOrCe iNtEITUPL uoieniii e e e e e e e e ees 27
R I L 01 (0o =0 0! o T PPN 28
5.9.5. INtErrupt SEIVICE FOULINES ...vuiviiiiieie et ettt e e e e e e e e e e e e e e e e e e aeees 29
e ST 1= 1 0o 1=] o 32
5.9.7. Low-level interrupt handlersoveniiiiii e 33
5.9.8. Interrupt tiMeStaMPING iiniii e e e e e e e e aans 34

5.10. Asymmetric MUltiprocessing APl ..o 36
5.10.1. Processor identifiCalionc.ciieiiiiiii i 36
5.10.2. INter-proCessor CONIIOI iee e e e e e e e e e e e eeans 36

5.11. Default trap handlersoooiie e 37

L N o I 1= = = N 37

6. AMBA PlUg&PIay [IBrary ... e 40

L300 1 11 oo T 1 o o It 40
6.1.1. AMBA Plug&Play terms and NAMES iviniiiiiiiei e e e e e e e eans 40
B.1.2. AVAIEDIITY oot e 40

6.2, DEVICE SCANNING 1.uitiiitieit ettt e e e e e et et e e et et e e e et t e et r e e e e et e et e et e et e eneeaneeaneeaneenns 40

B.3. USEr CaAllDACK oo 42
Lo I I O) = =11 7= (g] o P 42
6.3.2. DeVICe iNfOrMELION ciiiiii e e e e e 42

L = 1110 = N 43

LT A o = 1 =0 44

7. BOard SUPPOI PaCKagES ..ieuiiieiiiiiiie e e e et e e e e e e e e et e e e e et e e e e e e e e e et aaae 45

8 T O Y= = P 45

72, LEOIN S oot et et et raa s 45

7.3, LEOIN S o e et eaa s 45

T4, GRTLIZRC oottt et e e aans 45

T8, BR7ZAD e et 46

T8, GR7LB oo e e et e ea e 46
I S W o] oo (0 I = U = 46
7.6.2. BOOL ROM ..ottt ettt et 47
7.6.3. APBUART QNItialiZatioN ieeiiiiiieei ettt e e e e e ean e 49
7.6.4. Chip SPECITIC APl oo e e e 49

F.7. LEON 2 ottt eaa s 53

7.8, A G G A e e 53

8. CUSIOMIZING B C oottt e e e e e e e e e a e 54

S 00 1 11 oo T 1 o o Pt 54

S A o 1= = | 7= 54
8.2. 1. INIIAlIZALION ..eeeieeie e e 54
8.2.2. Input and OULPUL FUNCLIONS ... oveiiiii e e e e ees 54
LS 2A0C T O o110 o [S 55
8.2.4. ClBrary 11O et 55

S G T T 0 7= S | = 55
8.3. 1 INIIAlIZALION ..eeeeee e 55
8.3.2. TIME aCCESS fUNCLIONS iiiiii i e e e e e e e e e 56
LS TC TG A O o110 o [N 56

8.4. Interrupt CONIOIIEr AriVEr ... r e e e eans 56
S N 0 T (= (o P 56
8.4.2. ACCESS TUNCLIONS .ouie it e e e e e eans 56
SR G T = o110 o S 56

8.5. Initiaization override EXampPlecouiiii i 57

8.6. INItIAizalion NOOKScoeiiii e 57

8.7. Disable . bss section iNitialiZalionccoiiiiiiic e 58
S 0 T 10 o] = 59

8.8. Heap memory CONfIQUIALION c..iieiii i e e e e e e e e e e e e e et e eanas 59

8.9. ParametersS tO IMAI NM(1) covniiiiiii i eanes 59

8.0, AP TEfEIENCE oo e 60

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 3

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

LS TS U o oo o PP 61
A. Recommended GCC options for LEON SYSIEMS ...ouiiiniiiiii e e e e e e e e e een 62
B. Recommended Clang options for LEON SYSIEMS couiiiniiiiiii e ee e e e e e e e 64
C. Moving applications from BCC L.Ot0 BCC 2.2.4 ..ot e e 65
|, DEVICE ANVEIS MBI EIENCE .ouiiiiii e e e e e e e e e et e et e e e eanns 66
10. Driver reQiStraliON ieeieeieii e e e e e e e e e e e e e e 72
O I A B (o]0 Lol =0 == 1 o g 72

10.2. Manual regiStralion oceeiieeie e e e 72

10.3. System specific device registration tablesooviiiiiiiiii 73

11. GRSPW PaCKEL AriVEr ..ottt ettt et et e e e e e e eeanas 74
I O 11T [T 1 o 74

11.2. SOftWare deSigN OVEIVIEW iveiiieii e e e e e e et e e e e e e e e et e e e e e eeans 74

11.3. DeVICE INLEITACE ...iieii e e e 79

I I Y N T | = 1 o 87

T = 1 (= 0o TP 100

I T == o 1 oS 102

12. GRCAN CAN AriVEN oottt e e e e et e eean e eees 103
5220 O 111 oo [T 1 o 103

12.2. Opening and ClOSING GEVICE ivuiiieiii e e e e e e enns 103

HD2C @ o= 1o o I 120 = S 105

2 o 1o 1= o 106

12,5, RECAIVE fIllEIS oo e e 108

A T L= g = = ot 108

12.7. DEVICE SEBIUS ..eetiiieieii et e e e e e et et e e et e e e e e e e e et e e e e e et e et e e e e e anaen 109

12.8. CAN DUS tranSferS .ouniiiiii e e e 109

12,0, INEITUPE APl e 113

L3 UA RT IV E e e ettt et e e e an s 115
G T O 111 e T [T 1 o 115

13.2. Driver regiStraliOnN ccuiieiii i e e e e e 115

13.3. Opening and ClOSING GEVICE ivuiiiiii e e e e e e e e e e enns 115

134, SEAUS INLEITACE ...iveiii e e e e e e e e e e 116

13.5. Configuration INLEIFACE cvuiii i e 116

13.6. NON-interrupt iNtEIfaCe oovniiieii e 118

13.7. INterrupt INTEIaCe .oovnii e 119

G 3 T = o 1 o 120

S o | £ PP TP PP PPTRPN 121
7 O 11 oo [T 1 o 121

14.2. Driver reQiStraliOn cceiieiii i e e e e e e e e e e 121

14.3. Opening and ClOSING GEVICE ivuiiiiiii e e e e e e e e e e enns 121

T4, SEALUS SEIVICE oouiiiiii i ettt e e et e e et e e e e e e et e e e e e et e et ean e e an e e eanes 122

14.5. Transfer ConfigUIralion coouiiuieiiiii e e e e e e e e e e ees 122

14.6. Transfer INLEIfatec.iiiiiii e e e e 124

14.7. Synchronous TX/RX MOUE cvuiieiii i e e e e e 126

TA.8. SIAVE SEIECE oo 127

I T = o 1 o 127

T D O .07 = o [V 128
LS 0 O 111 e T [0 Tox 1 o 128

15.2. DriVer reQiStraliOnN ccuiie i i e e e e e e 128

LG TR T 11 0] =N 128

15.4. Opening and ClOSING GEVICE cvuiieiii e e e e e e e e anas 128

15.5. OPEration MOUE ...cvuiiiiiiiiei e e e e e e e e e e e e e e e e e anaeen 129

LG T @1 o 1= o 130

T B = g = = ot 132

15.8. 12C DUS tranSfor .eeieiiii e e e e 133

15.9. SyNchronous eXamPle iiiii i 135

G T I 0T S | = N 137
G 0 O 111 e T [T 1 o 137

16.2. DriVer regiStralionN ccuiieiiieie e e e e e e e e e 137

16.3. DeVICE INTEITACE ..ieniiii i e 137

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 4

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

16.4. SUDLIMEr INTEITACE .oeeiie e 139
16.5. RESIIICHIONS ettt ettt ettt e e et e et e e e e et e e e e ean s 143
17, GPIO AIVEE ettt et et e aa s 144
17.0. INEFOAUCTION ettt ettt e e et e et e e et e e et e e e tn e e eaeeenns 144
17.2. DriVEr reQiStraliON ceeiie i i e e e e e 144
17.3. Opening and ClOSING GEVICE ivuiiiiiii e e e e e e e anns 144
17.4. CONtrol INEEITACE ..ieei e et eeens 145
17.5. Interrupt Map INLEIfate iiei e 147
18. AHB Status RegISIEr AriVEr ...ieniiiiii e e e e e e e e e eans 149
18.1. INEFOAUCTION ..eeeeii ettt ettt et et e et e et e et e e et e e eaeeenns 149
18.2. Driver regiStraliON ccuiie i i e e e e e e e e 149
18.3. Opening and ClOSING GEVICE ivuiiiiii e e e e e e enns 149
18.4. ReQISter INTEITAtE ..o e 150
18.5. INErrupt SENVICE FOULINE ...ovuiieiie e e et e e e e e e e e e e e e e e aeees 150
19. Clock gating UNit OriVEr ... e e e e e e e e e e e e e e eaeees 153
RS N g oo (0ot i T o PP TP PP PPT 153
19.2. Driver regiStraliOnN ccuieeoiei it e e e e e 153
19.3. Opening and ClOSING GEVICE ivuiiiiii e e e e e enns 153
S @ o 1 o] 1 154
RS R O (I = = PP 155
19.6. Probe CloCK gating SLALUS ...ccuuveeiiiiii e e e e e e e e e e e e 155
1O.7. CPU OVEITIAR ettt ettt et et e e e et e eaaaeees 155
20. GRIB53B DIIVEl eeeiiiieeit ettt ettt et ettt et et et a e e e eaas 157
P20 I L oo (U Tox i o] o PP TP PP PPPT 157
21. GR1553B BUS CONLrOIEr DIIVEr ...t et e e aens 159
P2 I I 1 oo (U Tox i o] I PP UPPT PP 159
21.2. BC Device HandlinNg ovvniiiiii e e e e e 160
21.3. Descriptor List HaNdliNg ...ooeiiniiiei e 162
22. GR1553B Remote Terminal DIiVEr oouuiiiiiiiiie e 174
P72 W L 1 oo (U Tox i o] o PP UPP T UPPT 174
22.2. USEN INTEITACE oottt 174
23. GR1553B BUS MONITOr DIIVEN ..ouiiiiiieii ettt et e e e e eeens 184
P2 T I 1 oo (U Tox i o] o PP UPP T UPPT 184
23.2. USEN INTEITACE ottt e 184
24. GR716 memory protection UNit driVErcooiiiiiii e e e e 189
P2 I L oo (U Tox i o] o PP UPP T UPPT 189
W B LGNV = gl (=0 (= 1 o o 189
e = 1 o] = N 189
24.4. Opening and ClOSING TEVICE ciuniiiiii e e e e e 189
S @ o = 1 o TN 170 L= 190
24,8, RESEL ..ttt a s 191
24.7. Segment CONFIQUIELION iie e e e e e e e e e eans 191
P T Y = 0 To Aot o] o= 195
P23 I L oo (U Tox i o] o PP UP PP UPPT 195
25.2. SOftware deSIgN OVEIVIEIW iveii et e e e e e e e e e e e e aeens 195
25.3. Memory scrubber user interface covvveiiiiiii 196
254, API TEFBIBINCE ..ottt e 203
26. SPACEWITE ROULEr DIIVEN ..ot e e e e e e e e e e e e eanes 205
ST I 1o o (U Tox i o] o PP P TP PP 205
26.2. DIIVEL SOUMCES .eeueiit et e et et et et e et e et e ettt et e et et et e e et e et ba e e e ab e eeaeeeanss 205
225 T T 011 1o 205
26.4. Register and aCCeSS ArVEl ...vuiiiiici e e e e e e e e e e e e aaeen 205
26.5. Setup routing tale ooeii 206
26.6. LiNK Nandling ooeiii e 209
26.7. Error Nandling ...oveiiii e 212
26.8. TIME COUES ...eiiiieeii ettt ettt et ettt e e et e et e et e e e e eeens 213
26.9. INTEITUPL COOBS .oniiiniii et e e e e e e e e e et e e e e e eans 214
26.10. CoNfigUIe tIMEOULS uieiiiieii i et e enaeanaeannns 216
26.11. Configure packet max |ength ..o 217

BCC-UM
Jul 2023, Version 2.2.4

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
5

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
26.12. Configure Plug-and-Play ccuiiiiiiii e 217
26.13. Read out Credit COUNLEIS iveiii e et e e e e e e e e e enaeees 217
27. GR716B Real-Time ACCEerator (RTA) .eoiiiiiieii e e e e e ees 219
475 1 11 [o 219
272, EXAMPIES oo 219
27.3. Software design CONSIAEralioNS c.uveeiiiiii e e e 219
D B TGNV o U o P 219
27.5. DriVEr reQiStraliOn ceeii i e e e e e e 219
27.6. OPENING TEVICES ovuiitiiii it e e e e e e e e e e e e e e e e aaens 220
277, StartiNg the RT A S oo e e e 221
27.8. MailboxX COMMUNICALION iceiee e e e e et e eaeeanas 222
27.9. APl TE I ONCE e e 223
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 6

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

1. Introduction

1.1. Scope

BCC isacross-compiler for LEON2, LEON3 and LEON4 processors. It is based on the GNU compiler tools, the
newlib C library and a support library for programming LEON systems. The cross-compiler allows compilation
of C and C++ applications.

There is aso an experimental LLVM/Clang version of BCC based on the LLVM compiler framework. More
information about the LLVM based toolchain can be found in Chapter 3. The GCC and LLVM/Clang versions
of BCC are distributed in separate packages. The libraries in the two provided packages are compiled using the
selected compiler, with the exception of libgcc which is always compiled with GCC.

BCC consists of the following packages:
¢ GNU GCC 10.2.0 C11/C11++ compiler with support for atomic operations
GNU binutils 2.35
Newlib Clibrary 2.5.0
e i bbcc - A user library for programming LEON systems
e |'ibdrv - A userlibrary of GRLIB peripheral drivers
« GNU GDB 8.2.1 source-level debugger

Inthe LLVM/Clang version, the GCC package is replaced by:
* Clang 8.0.0 C11/C11++ compiler with support for atomic operations (LLVM version)

1.2. Installation

1.2.1. Host requirements

BCC is provided for two host platforms: GNU Linux/x86_64 and Microsoft Windows. The following are the
platform system requirements:

GCC Version:

Linux: Linux-2.6.x, glibc-2.11 (or higher)

Windows: -

LLVM Version:

Linux: Linux-3.5.x, glibc-2.15 (or higher)

Windows: -

In order to recompile BCC from sources, automake-1.11.1 and autoconf-2.68 is required. MSYS-DTK-1.0.1 is
needed on Microsoft Windows platforms to build autoconf and automake. Sources for automake and autoconf can
be found on the GNU ftp server:

« ftp://ftp.gnu.org/gnu/autocont/
* ftp://ftp.gnu.org/gnu/automake/

MSY Sand MSY S-DTK can be found at http://www.mingw.org.
1.2.2. Linux

After obtaining the compressed tar file for the binary distribution, uncompress and untar it to a suitable location.
The Linux version of BCC has been prepared to reside in the / opt / bcc- 2. 2. 4- gcc/ directory, but can be
installed in any location. The distribution can be installed with the following commands:

$ cd /opt
$ tar -C /opt -xf /opt/bcc-2.2.4-gcc-1inux64.tar. xz

After the compiler isinstalled, add/ opt / bcc- 2. 2. 4- gcc/ bi n to the executables search path (PATH) and /
opt/ bcc-2. 2. 4- gcc/ man to the manual page path (MANPATH).

1.2.3. Windows

BCC for Windows does not require any additional packages and can be run from astandard command prompt. The
toolchaininstallation zipfile,/ opt / bcc- 2. 2. 4- gcc- m ngwe4. zi p, shall beextractedto C: \ opt creating

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 7

https://www.frontgrade.com/gaisler
ftp://ftp.gnu.org/gnu/autoconf/
ftp://ftp.gnu.org/gnu/automake/
http://www.mingw.org

rRONTGRADE

Gaisler

the directory C. \ opt \ bcc- 2. 2. 4. The toolchain executables can be invoked from the command prompt by
adding the executable directory to the PATH environment variable. The directory C. \ opt \ bcc- 2. 2. 4\ bi n
can be added to the PATH variable by selecting "My Computer->Properties->Advanced->Environment Vari-
ables".

Development often requires some basic utilities such as make, but is not required to compile. On Windows plat-
forms the MSY S Base system can be installed to get a basic UNIX like development environment (including
make).

See http://www.mingw.org for more information on MinGW and the optional MSY S environment.

1.3. Contents of /opt/bcc-2.2.4-gcc

The binary installation of BCC contains the following sub-directories:

bi n/ Executables

doc/ GNU, newlib and BCC documentation

man/ Manual pages for GNU tools

sparc-gaisler-elf/ SPARC target libraries, include filesand LEON BSP

sparc-gai sl er-el f/bsp/ Board Support Packages for LEON systems

src/ Various sources, examples and build scripts

src/ exampl es/ BCC example applications

src/libbcc/ I i bbcc source code and build scripts

src/libdrv/ I i bdr v source code, examples and build scripts
1.4. BCC tools

The following tools are installed with BCC:

sparc-gai sl er-el f-addr2line Convertaddressto C/C++ line number

sparc-gai sler-elf-ar Library archiver
sparc-gaisler-elf-as Cross-assembler

sparc-gai sler-elf-c++ C++ cross-compiler
sparc-gaisler-el f-c++filt Utility to demangle C++ symbols
sparc-gaisler-elf-cpp The C preprocessor

sparc-gai sler-el f-g++ Same as sparc-gaider-elf-c++
sparc-gai sler-elf-gcc C/C++ cross-compiler
sparc-gai sl er-el f-gcov Coverage testing tool

sparc-gai sler-el f-gdb GNU GDB C/C++ level Debugger
sparc-gai sler-elf-gdb-6.8 GNU GDB C/C++ level Debugger
sparc-gai sl er-el f-gprof Profiling utility
sparc-gaisler-elf-1d GNU linker

sparc-gai sler-elf-nm Utility to print symbol table

spar c-gai sl er-el f-obj copy Utility to convert between binary formats
sparc-gai sl er-el f-objdunmp Utility to dump various parts of executables

sparc-gaisler-elf-ranlib Library sorter

sparc-gai sl er-el f-readel f ELF file information utility

sparc-gaisler-elf-size Utility to display segment sizes

sparc-gaisler-elf-strings Utility to dump strings from executables
sparc-gaisler-elf-strip Utility to remove symbol table

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 8

https://www.frontgrade.com/gaisler
http://www.mingw.org

rRONTGRADE

Gaisler

1.5. Documentation

The GNU and newlib documentation is distributed together with the toolchain, located in the doc/ directory of
the installation.

GNU tools:
as. pdf Using as - the GNU assembler
bi nutils. pdf The GNU binary utilities
cpp. pdf The C Preprocessor
gdb. pdf Debugging with GDB
| d. pdf The GNU linker
gcce/ gec. pdf Using and porting GCC
Newlib C library:
I'i bc. pdf Newlib C Library
I'i bm pdf Newlib C Math Library
BCC:
bcc. pdf BCC User's Manua (this document)

All documents are all provided in PDF format, with searchable indexes.
1.6. Toolchain source code distribution

The BCC toolchain source code distribution can be used to rebuild the tool chain host binaries (compiler, Binutils)
and the target C library.

Installing the tool chain source code is not required for creating a new BSP or to modify an existing one. The BSP
source code (I i bbcc) isinstalled together with the binary distribution under src/ | i bbcc/ .

1.6.1. BCC source code installation

The source code for the BCC 2.2.4 toolchain is distributed in an archive named bcc- 2. 2. 4-src. tar. bz2,
available on the website frontgrade.com/gaisler. It contains source code for the target C library and the host com-
piler tools (binutils, GCC, GDB).

Installing the source code is optional but recommended when debugging applications using the C standard library.
The target libraries have been built with debug information making it possible for GDB to find the sources files.
It allows for example to step through the target C standard library code.

The BCC source code files are assumed to be located in / opt / bcc- 2. 2. 4-gcc/ src/ bee-2. 2. 4. The
sources can be installed by extraction the source distribution archive bcc- 2. 2. 4-src. tar. bz2 to/ opt/
bcc- 2. 2. 4-gcc/ src. It can be done as follows for the Linux/GCC version of BCC.

$ cd /opt/bcc-2.2.4-gcc/src
$ tar xf bcc-2.2.4-src.tar. bz2

1.6.2. Building
A script named ubui | d. sh isincluded in the source distribution.

Tobuildandinstall the BCC compiler tools, GDB andtheClibrary in/ t np/ bcc- 2. 2. 4- 1 ocal , thefollowing
steps shall be performed:

$ cd /opt/bcc-2.2.4-gcc/src/bece-2.2.4
$./ubuild.sh --destination /tnp/bcc-2.2.4-1ocal --toolchain --gdb

Either of the parameters - - t ool chai n or - - gdb can be omitted. Execute ubui | d. sh - - hel p for more
information on how to use the script.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 9

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

1.7. Support

BCC is provided freely without any warranties. Technical support can be obtained through the purchase of tech-
nical support contract. Please contact sales@gaisler.com for more details.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 10

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

2. Using BCC

This chapter gives an overview on how to develop applicationsusing BCC 2.2.4

2.1. General development flow

Compilation and debugging of applications istypically donein the following steps:
Compile and link the program with GCC

Debug program using a simulator (GDB connected to TSIM)

Debug program on remote target (GDB connected to GRMON)

Create boot-prom for a standal one application with mkprom2

~wbdrE

2.2. Compiler options

The GCC front-end, spar c-gaiser -elf-gcc, and the Clang front-end, spar c-gaisler -elf-clang, has been modified
to support the following options specific to BCC and LEON systems:

- gbsp=bspnanme Usetarget libraries, startup files and linker scripts for a specific LEON system. The
parameter bspname corresponds to a Board Support Package (BSP). A description
of the BSPs distributed with BCC is given in Chapter 7. The BSP| eon3 isused as
default if the - qbsp= option is not given.

- gnano Use aversion of the newlib C library compiled for reduced foot print. The nano
version implementations of thef pri nt f () f scanf () family of functions are
not fully C standard compliant. Code size can decrease with up to 30 KiB when
printf() isused.

- gsvt Use the single-vector trap model described in SPARC-V8 SQupplement, SPARC-V8
Embedded (V8E) Architecture Specification.

Useful (standard) options are:

-g Generate debugging information - should be used when debugging with GDB.
-nsoft-fl oat Emulate floating-point - must be used if no FPU exists in the system.
-Q2or-0s Optimize for maximum performance or minimal code size.

-Qg Optimize for maximum debugging experience.

- ntpu=l eon3 Generate SPARC V8 code. Includes support for the casa instruction.

-nfl at Enable single register window model (flat). See Section 2.7.

-nfix-gr712rc Enableworkarounds applicable to GR712RC. - nf i x- gr 712r ¢ enables
workarounds for the following technical notes:
* GRLIB-TN-0009
e GRLIB-TN-0011
¢ GRLIB-TN-0012
GRLIB-TN-0013
GRLIB-TN-0018

-nfix-ut 700 Enable workarounds applicable to UT700 and UT699E. - nf i x- ut 700 enables
workarounds for the following technical notes:
¢ GRLIB-TN-0009
¢ GRLIB-TN-0010
* GRLIB-TN-0013
« GRLIB-TN-0018

-gfi x-tn0018 Enable workarounds for GRLIB technical note GRLIB-TN-0018.

2.2.1. sparc-gaisler-elf-gcc options

The following options are available in the GCC version of BCC.

-flto Enable link time optimization.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 11

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

- ntpu=l eon Generate SPARC V8 code.

- ncpu=l eon5 Generate SPARC V8 code.

-ntpu=l eon3v7 Generate SPARC V7 code (no nul /di v instructions). Includes support for casa
instruction.

-nfix-b2bst Enable workarounds for GRLIB technical note GRLIB-TN-0009.

-nfix-tn0013 Enable workarounds for GRLIB technical note GRLIB-TN-0013.

-nfix-ut 699 Enable the documented workarounds for the floating-point errata and the data cache

nullify errata of the UT699 processor. This option also enables workarounds for
GRLIB-TN-0009, GRLIB-TN-0013 and GRLIB-TN-0018.

Other GNU GCC options are explained in the gcc manual (doc/ gcc. pdf), see Section 1.5.

2.2.2. sparc-gaisler-elf-clang options

The following options are available in the LLVM/Clang version of BCC.

-Oz Aggressively optimize for minimal code size
- nr ex Enables generation of the LEON-REX SPARC instruction set extension.

-no-integrated-as Usethe GNU assembler instead of the LLVM integrated assembler. Note the
GNU assembler does not have support for the LEON-REX extension.

Clang generates SPARC V8 code by default.

2.3. Compiling BCC applications

To compile and link a BCC application with GCC, use spar c-gaisler -elf-gcc:

$ sparc-gaisler-elf-gcc -Q2 -g hello.c -0 hello

To compile and link a BCC application with Clang, use spar c-gaisler -elf-clang:

$ sparc-gaisler-elf-clang -2 -g hello.c -0 hello

BCC creates executables suitable for most LEON3 systems by default. The default load addressiis start of RAM,
i.e. 0x40000000. Other load addresses can be specified through the use of the - Tt ext linker option (see Sec-
tion 7.1).

To generate executables customized for specific components and systems, - gbsp=nane and ncpu=nane op-
tions should be used during both compile and link stages. A table with recommended compiler optionsfor LEON
systems can be found in Appendix A (GCC), and Appendix B (Clang).

2.4. Floating-point considerations

If the target LEON processor has no floating-point hardware, then all applications must be compiled and linked
withthe- nsof t - f | oat option to enable floating-point emulation. When running an application compiled and
linked with - nsof t - f | oat inthe TSIM simulator, the simulator should be started with the - nof pu 1 option
(no floating-point) to disable the FPU.

Floating-point hardware state is not automatically saved and restored when BCC dispatches an interrupt service
routine (ISR). Any ISR code making use of the floating-point hardware should save and restore the context as
described in Section 5.7.

To link an application which uses the C standard library math functions, the linker option - | mshould be used.
Thislinks the application with the library filel i bm a.

2.5. LEON SPARC V8 instructions

LEONS3 processors can be configured to implement the SPARC V8 multiply and divide instructions. The GCC
version of BCC does by default not issue those instructions, but emulates them trough a library. To enable gen-

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 12

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

eration of mul /di v instruction, use the - ncpu=l eon or - ntpu=l eon3 option during both compilation and
linking. This improves performance on compute-intensive applications and floating-point emulation.

2.6. Multiply and accumulate instructions

LEON2, LEON3 and LEON4 can support multiply and accumulate (unac/snac) instructions. The compiler will
never issue those instructions but can be coded in assembly. The BCC provided assembler and utilities support
this feature.

2.7. Single register window model (flat)

The BCC compilers and run-time uses the standard SPARC V8 ABI by default. GCC and Clang provides an
optional ABI, enabled with the - nf | at option, which does not generate any save andr est or e instructions.
Thisisknown asthe single register window model, or flat model. Instead of switching register windowsat function
borders, the flat model stores registers on the stack. - nf | at setsthe preprocessor symbol _FLAT.

An application compiled and linked with the flat model will never generate wi ndow_over fl ow and
wi ndow_under f | owtraps.

Compiling with - nf | at affects code size. Asan example, the Newlib Clibrary (I i bc. a) t ext segment is8%
larger inthe - ncpu=Il eon3 - nf | at multilib compared to the - ntpu=Il eon3 version.

BCC run-time is compatible with the single register window model when linked with - nf | at . The example
below compiles and links an application with the flat model.
$ sparc-gaisler-elf-gcc -nflat -O2 -c main.c -o nain.o

$ sparc-gaisler-elf-gcc -nflat -2 -c sonecode.c -0 sonecode. 0
$ sparc-gaisler-elf-gcc -nflat main.o somecode.o -o nyapplication.elf

The current GCC 10.2.0 - nf | at implementation was introduced with GCC 4.6. It is not binary compatible with
theold GCC - nf | at implementation which was deprecated in GCC 3.4.6.

2.8. Register usage

The compiler and run-time uses the SPARC input, local and output registers as specified by the SPARC V8 ABI.
For global registers, the following applies:

%l ... %4 Used by compiler and BCC run-time.

%95 Not used by compiler. Used by BCC run-time only when - nf | at isused. Can be
used freely by the application if - nf | at isnot used.

%6 ... %97 Not used by compiler. Not used by BCC run-time. Can be used by the application

for any purpose.

2.9. Single vector trapping

When the target hardware is configured to support single vector trapping (SVT), the - gsvt switch can be used
with the linker to build an image which uses a two-level trap dispatch table rather than the standard one-level
trap table. The code saving amounts to ~4KiB for the trap table and trap handling is slightly slower with single
vector trapping. The number of extra instructions needed for single vector trapping dispatching is constant. The
application image will try to enable SVT on boot using %asr 17.

2.10. Memory organization
The resulting executables are in ELF format and have three main segments; t ext , dat a and bss. The t ext

segment is by default at address 0x40000000 for LEON2/3/4, followed immediately by the dat a and bss
segments.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 13

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Standalone App

Top-Of-RAM

Startup Stack

Heap

Data

Text

0X40000000

Figure 2.1. BCC RAM application memory map

NGMP based LEON4 designs such as GR740 and LEON4-N2X have RAM at 0x00000000. Thisis supported
by the GR740 BSP.

The SPARC trap table is dways located at the start of thet ext segment. If single vector trapping is not used,
then the trap table is exactly 4 KiB. For single vector trapping, the allocated space is 380 bytes by default. The
exact size depends on the user configuration.

Program stack starts at top-of-ram and extends downwards. The area between the end of bss and the bottom of
the stack is by default used for the heap. BCC auto-detects end-of-ram by inspecting the stack pointer provided
by the boot loader or GRMON at early boot. Hence the heap is sized by the boot loader by default.

Section 8.8 describes how the heap can be configured by the application.

2.11. BCC Board Support Packages
BCC uses aBoard Support Package (BSP) mechanism to provide support for LEON system variations.

A BCC BSP includes the following:
e Target linker scripts.
« BCC device mapping and initialization.
» Customization of thel i bbcc user library.
e C header fileswith register definitions.
» Custom drivers available to the user.

BSP is selected with the - gbsp=bspname compiler option. This option does however not explicitly specify
what code the compiler outputs. It means that the appropriate - nrcpu=cpunare option has to be given to GCC
even when aBSP is selected.

A description of the BSPs distributed with BCC is given in Chapter 7. - gbsp=l eon3 isused by default.
2.12. Peripheral driver library

BCC comes with GRLIB peripheral driver library in both object and source code. Include files are available via
the BCC default include paths.

The option - | dr v should be given to the linker to include the library | i bdr v. a. Thislink library is built for
each compiler multilib.

The user APl isavailablein Part | and examples can befoundinsrc/ | i bdr v/ exanpl es/ .
2.13. Multiprocessing
BCC includes support for building Asymmetric Multiprocessing (AMP) applications: The GCC C11 compiler can

generate atomic CPU instructions and the BCC AMP API described in Section 5.10 operates on LEON multipro-
cessor support hardware.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 14

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Symmetric Multiprocessing (SMP) is not supported by BCC.

2.14. Debugging with GDB

GDB 8.2.1 isdistributed with BCC in the host executable file spar c-gaisler-elf-gdb. To generate debug informa-
tion when compiling object files, the compiler (or assembler) option - g isused. Target libraries distributed with
BCC are built with debug information and the related source code can be installed as described in Section 1.6.

For information on how to connect with GDB to TSIM simulator or the GRMON hardware monitor, see their
respective documentation.

2.14.1. Debug information considerations

* GCC and Clang distributed with BCC 2.2.4 generates debug information in dwarf-4 format by default.
 All prebuilt target libraries distributed with BCC 2.2.4 have dwarf-4 debug information.

GDB-6.8 supports dwarf debug information version up to dwarf-2. GCC-7 and later is focused around dwarf-4.
Thereisadwarf-2 mode in GCC-7, but it does not work very well with GDB-6.8. Therefore, BCC 2.2.4 uses the
more recent GDB-8.2.

GDB-8.2 as distributed with BCC has full support for dwarf-4. However, in modern versions of GDB (including
as GDB-8.2), the semantics of the GDB ext ended- r enot e protocol used for communication between aGDB
server and client has changed compared to GDB-6.8. TSIM and GRMON implement the server part of the GDB
remote protocol.

e TSIM2iscompatible with GDB-6.8.

e TSIM3iscompatible with GDB-6.8 and GDB-8.2.

* GRMONZ2 is compatible with GDB-6.8.

*« GRMON3is compatible with GDB-6.8 and GDB-8.2.

This means that debugging BCC applicationsin GDB is best supported with GRMON3 and TSIM 3.

TSIM2 users who want to use GDB are recommended to use BCC 2.0.x which uses dwarf-2 by default and is
distributed with dwarf-2 target objects.

2.15. Examples

A collection of benchmarks and examples on how to use the BCC user library can be found in the sr ¢/ exam
pl es/ directory of the BCC binary distribution. The directory also contains aMakef i | e which can be used to
build the examples for different configurations (BSP:s).

To build al examplesfor al BSP:s, issue:

$ cd src/exanples

$ make
sparc-gaisler-elf-gcc -
sparc-gaisler-elf-gcc -
sparc-gaisler-elf-gcc -
sparc-gaisler-elf-gcc -

- gbsp=agga4 -ncpu=leon hello/hello.c -o bin/agga4/./hello.elf

- gbsp=agga4 -nctpu=l eon stanford/stanford.c -o bin/agga4/./stanford.elf

- gbsp=agga4 -nctpu=l eon whet st one/ whetstone.c -o bin/agga4/./whetstone.elf -Im
- gbsp=agga4 -nctpu=l eon paranoi a/ paranoi a.c -0 bin/agga4/./paranoia.elf -Im

8888

To build examples for a specific BSP, set the BSPS make variable. For example:
$ make BSPS="gr712rc gr716"
Output filesare generated under sr ¢/ exanpl es/ bi n/ <BSP>. Thedifferent subdirectoriesreflect the compiler
options used.
It isalso possible to build asingle example by calling make <exanpl e>, for example:

$ make CFLAGS="-0s -g" anbapp.elf
sparc-gaisler-elf-gcc -Gs -g -std=c99 anbapp/ anbapp.c -o anbapp. el f

The executables will be stored in the examples root directory in this case. When building individual examples it
is possible to control the behaviour by setting the following variables.

CFLAGS

Override common compilation flags

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 15

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

For more information on the examples and how to build them, see thefile sr c/ exanpl es/ README.
2.15.1. Target specific examples

Some of the examplesin sr c/ exanpl es/ are adapted for specific target systems or may need customization.
These shall be built from inside the respective example directory, asindicated in sr ¢/ exanpl es/ READVE.

2.16. Creating a bootable ROM images

The MKPROM2 PROM image generator can be used to create boot-images for applications compiled with BCC
2.2.4. An example is provided in the BCC binary distribution directory sr c/ exanpl es/ nkpr om hel | o.
MKPROM?2 is distributed with source code and is available from the website frontgrade.com/gaisler. For more
information on how to use MKPROM 2, see the MKPROM?2 User's Manual.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 16

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

3. LLVM based toolchain

3.1. Introduction

With BCC 2 an LLVM based version of the toolchain is provided along side the regular GCC based toolchain.
The LLVM based toolchain is currently experimental.

The LLVM compiler framework is arelatively new and modern compiler framework. It has support for awide
variety of programming languages and architectures, including SPARC. The C-family front-end of LLVM, is
called Clang. Clang isthe main interface to the compiler, and the binary spar c- gai sl er - el f - ¢l ang isused
to compile C and C++ programs.

The Clang interface is similar to the GCC interface, and in many cases changing the build system to use LLVM/
Clang is a matter of changing the CC variable in a Makef i | e script from spar c- gai sl er-el f-gcc into
sparc-gai sl er-el f-cl ang.

The LLVM toolchain has its own assembler which is used by default. It is aso possible to switch to the GNU
assembler by using a command line option. The Clang front-end has been setup to automatically use the GNU
linker in asimilar way to the GCC version of BCC.

All the correct libraries and header files will be used by the Clang front-end. These are selected based on the flags
set by the compiler. The libraries include newlib, libbcc and libgec. A list of recommended command line option
for Clang can be found in Appendix B.

Installation, host requirements and contents of the LLVM based toolchain follows the information presented in
Chapter 1. Usage instructions follows the information presented in Chapter 2.

3.2. BCC LLVM/Clang tools

The following tools are included in the LLVM version of BCC. The tools are a combination of tools from the
LLVM compiler framework, the Clang C-family LLVM compiler, and GNU binutils. Thetoolsfrom binutils have
names prefixed with spar c- gai sl er - el f, except spar c- gai sl er-el f-cl ang, sparc-gai sl er -
el f-cl ang++ and spar c- gai sl er - el f - cpp which comes from Clang.

sparc-gai sl er-el f-addr2line Convertaddressto C/C++ line number

spar c- gai
spar c- gai
Spar c- gai
spar c- gai
spar c- gai
Spar c- gai
spar c- gai
spar c- gai
Spar c- gai
spar c- gai
spar c- gai
Spar c- gai
spar c- gai
spar c- gai
Spar c- gai
spar c- gai
spar c- gai
Spar c- gai

sler-elf-ar
sler-elf-as
sler-elf-c++filt
sler-el f-clang
sler-elf-clang++
sler-elf-cpp

sl er-el f-gdb
sler-el f-gdb-6.8
sl er-el f-gprof
sler-elf-I1d
sler-el f-nm

sl er-el f-obj copy
sl er-el f-obj dunp
sler-elf-ranlib
sler-el f-readel f
sler-el f-size
sler-elf-strings
sler-elf-strip

Library archiver

GNU Cross-assembler

GNU utility to demangle C++ symbols

LLVM C language family cross compiler for SPARC
LLVM C++ language family cross compiler for SPARC
LLVM C preprocessor

GNU GDB C/C++ level Debugger

GNU GDB C/C++ level Debugger

GNU profiling utility

GNU linker

GNU utility to print symbol table

GNU utility to convert between binary formats

GNU utility to dump various parts of executables
GNU library sorter

GNU ELFfileinformation utility

GNU utility to display segment sizes

GNU utility to dump strings from executables

GNU utility to remove symbol table

BCC-UM

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4

17

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

4. C standard library

BCC includes newlib 2.5.0 which is an implementation of the C standard library with full math support. Low-
level functionality required by newlib isimplemented in the SPARC LEON specific layer (I i bbcc).

Documentation for the newlib C library and math library is available as described in Section 1.5 Source code for
newlib can be obtained as described in Section 1.6.

Most of the functionality defined by the C standard library is supported by BCC. This chapter will describe devi-
ations and specific properties of the C library when executing on LEON systems.

4.1. File I/O

BCC newlib supports file 1/0 on the standard input, standard output and standard error files (st di n/st dout /
st der r). Thesefiles are always open and are typically associated with the BCC console device driver (see Sec-
tion 5.2).

Thereis no support in BCC for operating on disk files. There is no file system support.

4.2. Time functions

LEON timers are used to generate the system time. The C standard library functionsti me() and cl ock()
return the time elapsed in seconds and microseconds respectively. ti mes() and get ti meof day() , defined
by POSIX, are also available. The user can control how the time functions use the hardware timers as described
in Section 5.3.

4.3. Dynamic memory allocation

Dynamic memory can be alocated/deallocated using for example mal | oc(), cal | oc() andfree() . For
information on customizing the memory heap, see Section 8.8.

4.4. Atomic types and operations

BCC is based on GCC version 10.2.0 which includes C11 atomic types and operations. This allows for synchro-
nization between applicationsin AMP environments. Synchronization instructionssuch asl dst ub, swap casa,
etc. are generated by the compiler.

The C11 atomic interface is defined by st datomi c. h. Some of the atomic operations defined by
st dat omi c. h require hardware support not available on all LEON systems. Thel dst ub and swap instruc-
tionsare availablein all LEON processors, while casa isoptional. All multi-core LEON based components have
casa. The GCC option - ncpu=Il eon3 isrequired for full st dat oni c. h support.

See | SO/IEC 9899:2011 for more information on the C11 standard.

While atomic instructions are useful for sharing memory between processors and tasks, the atomic instructions
shall never be used for manipulating peripheral control registers.

4.5. Newlib nano

The nano version of newlib, selected with - gnano, isacompiled with optionsto reduce code foot print. - gnano
has the following limitations:
» Formatted /O lacks floating-point support. It can however be enabled as described in newl i b/ newl i b/
READIVE.
» Formatted /O lacks support for | ong | ong.
« Formatted 1/O does not support features from the outside of C89 standard.
e Multi-byte characters are not supported.

The option - gnano shall be specified both when compiling and linking.

If floating point formatted /O is needed when using - gnano, then the option-u _printf_fl oat canbe
added to the linker command line. For example viathe front-end option- W, -u, _printf _fl oat.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 18

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

5. BCC library

BCC isddivered with alibrary, | i bbcc, containing functions for programming LEON systems. This chapter is
the user documentation for the API. Later chapters will describe how the BCC run-time can be configured and
customized at link time.

The library is available in the target library file | i bbcc. a. There are multiple versions of | i bbcc. a, cus-
tomized for specific BSPs and compiler options (GCC multilibs). The exact versions of the library is selected
based on compiler command line parameters. This also reflects that different low-level drivers are implemented
for different hardware.

5.1. Usage

Functionsdescribed in this chapter have prototypesinthe header filebcc/ bcc. h. Thefunctionsareimplemented
inl i bbcc. a and areavailable per default when linking with the GCC front-end. The same user APl isavailable
independent of target LEON hardware.

5.2. Console API

The console API does not have any user functions. It can be accessed with the C standard library 1/0 functions
(Section 4.1).

5.3. Timer API
Thefunctionbcc_ti mer _get _us() can be used to determine system time in microseconds.

Table5.1. bcc_ti mer _get _us function declaration

Proto |uint32_t bcc_tinmer_get us(void)

About | Get processor time

Return |uint32_t. Number of microseconds since system start.

Other time related functions which depend on the BCC run time, but are not part of the BCC user library, are
available. Thisincludescl ock(),time(),ti mes() andgetti nmeof day().

5.3.1. Interrupt based timer service

By default BCC does not install any timer tick and can result in limited services provided by the C library time
functionsand bcc_ti ner_get _us() . Thetypical limitation is that time will seem to restart or stop at some
point in time, due to hardware timer expiration. Exact limitations are target hardware dependent, but is typically
manifested as atime wrap 232 microseconds after system reset.

To overcome this limitation, a timer tick service can be enabled by caling
bcc_timer_tick_init_period().Itwillinstal atick interrupt handler which istriggered periodically to
maintain time integrity, ensuring that time increments. Tick period is 10 milliseconds by default.

bcc timer _tick init _period() should be caled only once and at the beginning of the program. It is
recommended to call it fromthe _bcc_i nit 70() initialization hook, described in described in Section 8.6.

Table5.2.bcc_tinmer_tick init_period function declaration

Proto int bcc_timer_tick_ init_period(uint32_t usec_per_tick)

About |Enableinterrupt based timer service.

The function installs atick interrupt handler which maintains local time using timer hardware. This
makes C library / POSI X time functions not limited to hardware constraints anymore.

The function assumes that the timer (global) scaler is set to 1 MHz.

Param |usec_per _ti ck [IN] Integer
Requested timer tick period: number of microseconds per tick.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 19

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Return |int.
Vaue Description
BCC _OK Success
BCC _FAIL Failed to enable interrupt based timer service, or aready enabled
BCC NOT_AVAILABLE |Hardware or resource not available
Notes |Epoch changesto the pointintimewhenbcc_tinmer_tick_init_period() iscaled.

5.4. Cache control API
The cache control API isused to flush thelocal LEON processor instruction and data caches.

Functions are aso provided for operating directly on the LEON cache control register (CCR). Bit definitions for
CCRareavailableinbcc/ | eon. h.

Table5.3. bcc_f | ush_cache function declaration

Proto |void bcc_flush_cache(void)
About |Flush L1 instruction and data cache.
Return |None.

Table5.4.bcc_fl ush_i cache function declaration

Proto |void bcc_flush_icache(void)
About |Flush L1 instruction cache.
Return |None.

Table5.5. bcc_f | ush_dcache function declaration

Proto |void bcc_flush_dcache(voi d)
About |Flush L1 data cache.
Return |None.

Table5.6. bcc_set _ccr function declaration

Proto |void bcc_set_ccr(uint32_t data)
About | Set Cache Control Register (CCR).

Param |dat a [IN] Integer

New CCRvalueto set.

Return |None.

Table5.7. bcc_get ccr function declaration

Proto |uint32_t bcc_get ccr(void)
About | Get value of Cache Control Register (CCR).
Return |uint32_t. CCR.

5.5. Bus access API

Functions are provided for |oading data from memory with forced L1 cache miss.

Table 5.8. bcc_| oadnocache function declaration

Proto |uint32_t bcc_|l oadnocache(ui nt32_t *addr)
About |Load 32-bit word from addr with forced cache miss.
Param |addr [IN] Pointer

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 20

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Address to load from.
Return |uint32_t. Dataloaded from addr .

Table 5.9. bcc_| oadnocachel6 function declaration

Proto |uint16 t bcc_| oadnocachel6(uint16_t *addr)
About |Load 16-bit word from addr with forced cache miss.

Param |addr [IN] Pointer

Address to load from.

Return |uint16 t. Dataloaded from addr .

Table5.10. bcc_| oadnocache8 function declaration

Proto |uint8_ t bcc_| oadnocache8(uint8 t *addr)
About |Load 8-bit word from addr with forced cache miss.
Param |addr [IN] Pointer

Address to load from.

Return |uint8_t. Dataloaded from addr .

Thefunctionbcc_dwzer o() canbeused to clear amemory region using 64-bit writeswith the st d instruction.

Table5.11. bcc_dwzer o function declaration

Proto |void bcc_dwzero(uint64_t *dst, size_t n)
About | Set 64-bit wordsto zero

This function sets n 64-bit words to zero, starting at address dst . All writes are performed with the
SPARC V8 st d instruction.

Param |dst [IN] Pointer

Start address of areato set to zero. Must be aligned to a 64-bit word.
Param |n [IN] Integer

Number of 64-bit words to set to zero.

Return |None.

5.6. IU control/status register access API
This API provides accessto low-level SPARC control/status registers and controls power-down mode.
5.6.1. Processor State Register

The Processor State Register (PSR) can be read with bcc_get _psr () and written with bcc_set _psr () .
Processor Interrupt Level (PSR PIL) is read using bcc_get _pil (). PSR PIL can be set with
bcc_set _pi | () whichisimplemented as a software trap and guarantees atomic update.

Care must be taken when manipulating PSR using read-modify-write sequences, since the operations are inter-
ruptible. See The SPARC Architecture Manual Version 8, section B.29.

It is recommended to use the safe functions described in Section 5.9.1 for manipulating PSR. PI L.

Table5.12. bcc_get _psr function declaration

Proto |uint32_t bcc_get _psr(void)
About |Get value of Processor State Register (PSR).
Return |uint32_t. PSR.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 21

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table5.13. bcc_set _psr function declaration

Proto |void bcc_set _psr(uint32_t psr)
About | Set Processor State Register (PSR).

Param |psr [IN] Integer

New PSRvalue to set.

Return |None.

Table5.14. bcc_get _pi | function declaration

Proto |int bcc_get pil (void)
About | Get Processor Interrupt Level (PSR. PI L).
Return |int. Value of PSR. PI L (0..15) in bits 3..0.

Table5.15. bcc_set pi | function declaration

Proto |int bcc_set pil (int newpil)

About | Set Processor Interrupt Level atomically.

This function isimplemented as a software trap and guarantees atomic update of PSR. PI L.

Param [newpi | [IN] Integer
New value for PSR. PI L (0..15) in bits 3..0.
Return |int. Old value of PSR. PI L (0..15) in bits 3..0.

5.6.2. Trap Base Register
The Trap Base Register (TBR) can beread withbcc_get _t br () and written withbcc_set _tbr ().

Table5.16. bcc_get _t br function declaration

Proto |uint32_t bcc_get thr(void)
About |Get value of Trap Base Register (TBR).
Return |uint32_t. TBR.

Table5.17. bcc_set _t br function declaration

Proto |void bcc_set _tbr(uint32_t thbr)
About |Set Trap Base Register (TBR).

Param |t br [IN] Integer

New TBRvalueto set.

Return |None.

To retrieve only the Trap Base Address (TBR. TBA) of TBR, thefunctionbcc_get _t r apbase() canbeused.

Table5.18. bcc_get _trapbase function declaration

Proto |uint32_t bcc_get_trapbase(void)
About |Get Trap Base Address (TBR. TBA).
Return |uint32_t. TBR. TBA in hits (31..12).

5.6.3. Processor power-down
The current processor is powered down by calling bcc_power _down() .

Table 5.19. bcc_power _down function declaration

‘Proto ‘i nt bcc_power _down(voi d)

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 22

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

About | Power down current processor.
Return |int. BCC_OK

5.7. FPU context API

bcc_f pu_save() isusedto save the current state of the floating-point registers % 0 to % 31 and the % sr

register to a user-specified location. bcc_f pu_r est or e() restores an FPU context previously saved by the
user. Storagefor the FPU context struct bee_fpu_state shall beallocated by the user and provided to thesefunctions.
The floating-point deferred-trap queue (% q) is emptied before saving and restoring the FPU context.

These functions can be used in an interrupt service routine which performs floating-point operations.

Table 5.20. bcc_f pu_save function declaration

Proto |int bcc_fpu_save(struct bcc_fpu_state *state)

About | Save floating-point context

The context shall be restored withbcc_f pu_restore().
Param |st at e [IN] Pointer

L ocation to save FPU context. This shall be a pointer to a preallocated struct bec_fpu_state, aligned to
8 byte.

Return |int. BCC_OK on success

Table5.21. bce_f pu_r est or e function declaration

Proto |int bcc_fpu restore(struct bcc_fpu state *state)

About |Restore floating-point context

The context st at e is FPU state previously saved withbcc_f pu_save().
Param |st at e [IN] Pointer

L ocation to restore FPU context from. This shall be a pointer to a preallocated struct bec_fpu_state,
aligned to 8 byte.

Return |int. BCC_OK on success

5.8. Trap API

Modifying the SPARC trap table is done using the BCC trap API. An entry can be inserted in the current trap
table with bcc_set _trap() described in Table 5.22. The function supports both the standard SPARC trap
mechanism and SPARC-V 8E single vector trapping (SVT as enabled with the - gsvt linker option).

After manipulating atrap table, the instruction cache may need aflush (see Section 5.4).

Below isan example on how thewi ndow_over f | ow(0x05) trap handler can be replaced with the user provided
trap handler called mynewhand| er:

#i ncl ude <bcc/ bcc. h>

extern void nmynewhandl er (void);
const int TT_W NDOW OVERFLOW = 0x05;

int set_trap_exanpl e(void)

{

int ret

ret = bcc_set_trap(TT_W NDOW OVERFLOW mynewhandl er);
return ret;

}

Table5.22. bcc_set _tr ap function declaration

‘Proto ‘i nt bcc_set _trap(int tt, void (*handler)(void))

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 23

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

About |Install trap table entry.

When this function returns successfully, the current trap table has been updated such that when the
trap occurs:

« Execution jumpsto handl er .

* 9% O contains %psr .

* 9% 1 containstrapped %pc.

* 9% 2 containstrapped %mpc.

* 9 6 (0..255) containssamevalueast t tobcc_set _trap().

The trap handler is typically written in assembly and must preserve any state it changes. It shall end
withther et t instruction.

This function operates on the current table. It supports multi vector trapping (MVT) and single vector
trapping (SVT).

Param |tt [IN] Integer

Trap type (0..255)

Param [handl er [IN] Pointer

Trap handler

Return |int.

Value Description

BCC OK |Success

BCC_FAIL |Trap table entry installation failed

Notes |bcc_set trap() doesnot flush the CPU instruction cache.

5.8.1. Single vector trapping (SVT)

This section describes steps which may be required when installing custom trap handlers under the SVT trap
mechanism available in some LEON systems. For the specification of SVT, see SPARC-V8 Supplement, SPARC-
V8 Embedded (V8E) Architecture Specification. SVT istypically used in systems with small memory footprint.

The BCC approach to SVT isto look up the target trap handler routine in two levels of tables. The level O table
contains 16 entries, each pointing to alevel 1 table. A level 1 table consists of 16 entries with the location of the
target trap handler routine. At trap time, TBR. TT[7: 4] indexesinto tablelevel 0 and TBR. TT[3: 0] indexes
into table level 1. Most of the level 1 tables entries are bad trap handlers so level 1 tables can be reused to save
storage.

The BCC SVT table lookup routine executes a fixed number of instructions, independent of target trap number
and independent of installed handlers.

BCC run time defines 4 of the maximum 16 level 1 tables per default when the application islinked with - gsvt ,
asillustrated in Table 5.23.

Table 5.23. Default SVT level 1 tables

Symbol name Default trap number assignments
__bcc_trap_table svt 0 0x00. . OxOF (system trap handlers and some bad trap handlers)
__bcc_trap_table svt_1 0x10. . Ox1F (interrupt traps 1..15)
__bcc_trap_table_svt_8 0x80. . Ox8F (softwaretrap 0..15)

__becec_trap_tabl e_svt_all bad |al other. Thistable contains 16 pointers to the symbol
__becc_trap_tabl e_svt_bad whichisadefault handler for

unexpected traps.
The single default level 0 table has symbol name _ bcc_trap_table_svt_level O
and contains 16 pointers to __bcc_trap_table_svt _[0..f]. Symbols

__bcc_trap_table_svt_{2,3,4,5,6,7,9,a,b,c,d,e,f} dl have the same vaue as

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 24

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

__bcc_trap_tabl e_svt_al |l bad per default. The level 1 tables with index 0, 1 and 8 have default values
according to Table 5.23.

bcc_set trap() canbeused directly on trap numbers in the ranges 0x00. . Ox1F and 0x80. . Ox8F. All
other trap numbers are redirected to the common __bcc_trap_t abl e_svt _al | bad table which is never
manipulated by bcc_set _trap().

It is however possible for the user to construct custom level 1 lookup tables by defining symbols with the
names __bcc_trap_tabl e_svt x, where x is an integer value between 0 and f . The linker will pick up
any the level 1 table named like this and use it instead of the all bad table. This is possible because al of
__becc_trap_tabl e_svt_x aredefined asweak symbols.

The following example defines a level 1 table containing one trap handler, my_trap_handl er 92 for
tt =0x92, at link time. At runtime, mai n() installsny_t rap_handl er 93 as handler for t t =0x93 using
bcc_set trap().Asecondcaltobcc_set trap() triestoinstal ahandler fort t =0xa3 which will fail
because the corresponding level 1tableisthedefault _bcc_trap_tabl e_svt _al | bad.

/*

* Exanple for defining a customlevel 1 SVT table and two trap handlers in the
* [0x90: 0x9F] range.

*

* NOTE: This exanple nust linked with the -qgsvt option.

*/

#i ncl ude <stdio. h>

#i ncl ude <bcc/ bcc. h>

/* User trap handlers inplenented el sewhere */
extern uint32_t ny_trap_handl er92;
extern uint32_t ny_trap_handl er93;

/* Default handler for unexpected traps */
extern uint32_t _ bcc_trap_tabl e_svt_bad;

/* Override weak synbol _ bcc_trap_table_svt_9 */
uint32_t *_ bcc_trap_table_svt_9[16] = {
& _bcc_trap_tabl e_svt_bad,
& _bcc_trap_tabl e_svt_bad,
&my_trap_handl er 92,
& _bcc_trap_tabl e_svt_bad,
& _bcc_trap_tabl e_svt_bad,
& _bcc_trap_tabl e_svt_bad,
& _bcc_trap_tabl e_svt_bad,
& _bcc_trap_tabl e_svt_bad,
& _bcc_trap_tabl e_svt_bad,

& _bcc_trap_tabl e:svt:bad,
& _bcc _

& _bcc_trap_tabl e_svt_bad,
& _bcc_trap_tabl e_svt_bad,
& _bcc_trap_tabl e_svt_bad,
& _bcc_trap_tabl e_svt_bad,
& bcc_trap_tabl e_svt_bad

:t rap_tabl e_svt_bad,

s
int main(void)
{

int ret;

ret = bcc_set_trap(0x93, &ny_trap_handl er93);
printf("ret=% (expecting 0)\n", ret);

ret = bcc_set_trap(0xa3, &nmy_trap_handl er93);
printf("ret=% (expecting non-zero)\n", ret);

return O;

}

5.9. Interrupt API

The interrupt API alows for enabling and disabling interrupt sources, interrupt remapping, attaching interrupt
service routines and control of interrupt nesting.

5.9.1. Interrupt disable and enable

All maskable interrupts are disabled with bcc_int_di sabl e() and enabled agan with
bcc_i nt _enabl e() . A nesting mechanism allows multiple disable operations to be performed in sequence

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 25

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

without the corresponding enabl e operation in between. These functions provide safe manipulation of the SPARC
V8 PSR. PI L registers. The interrupt controller is unmodified by these functions.

An integer variable is associated with every disable/enable pair which records state of the interrupt state to return
to. Thestateisreturned by bcc_i nt _di sabl e and taken asparameter by bcc_i nt _enabl e. Inorder for the
system to properly restore interrupt enable/disable state, the usage of state variables at interrupt enable operations
must be in opposite order of the disable operation.

Interrupts are in the enabled state when mai n() iscalled.

The example below illustrates how interrupt disable operations can nest.

#i ncl ude <bcc/ bcc. h>
int int_nest_exanpl e(void)
{

int lev0, levl;

/* Enter critical region 0. */
I evO = bcc_int_disable();

/* Enter critical region 1A */
levl = bcc_int_disable();

/* Leave critical region 1A
bcc_i nt _enabl e(l evl);

/* Enter critical region 1B. */
levl = bcc_int_disable();

/* Leave critical region 1B.
bcc_i nt _enabl e(l evl);

/* Leave critical region 0. */
bcc_i nt _enabl e(l ev0);

return 0; /* success */

}

Table5.24. bcc_i nt _di sabl e function declaration

Proto |int bcc_int_disabl e(void)
About |Disable all maskable interrupts and return the previousinterrupt enable/disable state

A matching bcc_i nt _enabl e() withthe return value as parameter must be called to exit the in-
terrupt disabled state. It is allowed to do nested callsto bcc_i nt _di sabl e(), and if so the same
number of bcc_i nt _enabl e() must be called.

This function modifies the SPARC V8 PSR.PIL field. Interrupt controller is not touched.

Return |int. Previousinterrupt level (used when calling bee_int_enable().

Table5.25. bcc_i nt _enabl e function declaration

Proto |void bcc_int_enabl e(int plevel)

About |Return to a previous interrupt enable/disable state

Thepl evel parameter isthe return value from apreviouscal tobcc_i nt _di sabl e() . Atre
turn, interrupts may be enabled or disabled depending on pl evel .

This function modifies the SPARC V8 PSR.PIL field. Interrupt controller is not touched.
Param |pl evel [IN] Integer

Theinterrupt protection level to set. Must be the return value from the most recent call to
bcc_int _disable().

Return |None.

5.9.2. Interrupt source masking

An interrupt source can be masked (disabled) with bcc_i nt _mask() and unmasked (enabled) with
bcc_i nt _unmask() . Interrupt source masking islocal to the issuing processor.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 26

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table5.26. bcc_i nt _nmask function declaration

Proto int bcc_int_mask(int source)

About |Mask (disable) an interrupt source on the current CPU.

Param |sour ce [IN] Integer
SPARC interrupt number 1-15 or extended interrupt number 16-31.

Return |int.
Value Description
BCC _OK Success

BCC_NOT_AVAILABLE |Devicenot available

Table5.27. bcc_i nt _unmask function declaration

Proto i nt bcc_int_unmask(int source)

About |Unmask (enable) an interrupt source on the current CPU.

Param |sour ce [IN] Integer
SPARC interrupt number 1-15 or extended interrupt number 16-31.

Return |int.
Value Description
BCC _OK Success

BCC_NOT_AVAILABLE |Devicenot available

5.9.3. Clear and force interrupt

A SPARC interrupt level can be forced on the local processor with bcc_i nt _force() . Aninterrupt source
(including extended interrupt) can be globally pended withbcc_i nt _pend() .

It is possible to manually clear (acknowledge) the pending condition for an interrupt in the interrupt controller
by calling the functionbcc_i nt _cl ear () . Note however that thereisin genera no need to manually clear an
interrupt from software. Thisis because the CPU will acknowledgetheinterrupt automatically in hardware when it
startsinterrupt trap processing. Callingbcc_i nt _cl ear () for aninterrupt sourcewhichisunmasked (enabled)
in the interrupt controller may lead to lost interrupts. The BCC run-time never callsbcc_i nt _cl ear () on

its own.

Table5.28. bcc_i nt _cl ear function declaration

Proto int bcc_int_clear(int source)

About |Clear an interrupt source.

Param |sour ce [IN] Integer
SPARC interrupt number 1-15 or extended interrupt number 16-31.

Return |int.
Value Description
BCC_OK Success

BCC _NOT_AVAILABLE |Devicenot available

Notes |Callingbcc_int_cl ear () for aninterrupt source which is unmasked (enabled) in the interrupt
controller may lead to lost interrupts.

Table5.29. bcc_i nt _f or ce function declaration

Proto int bcc_int_force(int level)

About |Forceaninterrupt | evel on the current processor.

Param |l evel [IN] Integer

BCC-UM
Jul 2023, Version 2.2.4

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
27

https://www.frontgrade.com/gaisler

rRONTGRADE

SPARC interrupt request level 1..15.

Gaisler

Return |int.
Value Description
BCC_OK Success.

BCC NOT_AVAILABLE |Devicenot available.

Notes |Extended interrupts can not be forced with this function.

Table 5.30. bcc_i nt _pend function declaration

Proto int bcc_int_pend(int source)

About |Make an interrupt source pending.

Param |sour ce [IN] Integer
SPARC interrupt number 1-15 or extended interrupt number 16-31.

Return |int.
Value Description

BCC _OK Success

BCC_NOT_AVAILABLE |Devicenot available

5.9.4. Interrupt remap

TheIRQ(A)MP interrupt controller can optionally beimplemented with functionality to allow dynamic remapping
between AMBA bus interrupt lines (0..63) and interrupt controller interrupt lines (1..31). This functionality can

be programmed withbcc_i nt _rmap_set () andbcc_i nt _map_get ().

Interrupt remapping functionality requires hardware support available in for example GR740 and GR716.

Table5.31. bcc_i nt _map_set function declaration

Proto int bcc_int_map_set(int busintline, int irgnpintline)

About | Set mapping from businterrupt line to an interrupt controller interrupt line.

Param |busi nt 1 i ne [IN] Integer
Bus interrupt line number

Param |i rqnpi nt | i ne [IN] Integer
Interrupt controller interrupt line

Return |int.
Value Description
BCC_OK Success

BCC_NOT_AVAILABLE |Device or functionality not available

Table5.32. bcc_i nt _map_get function declaration

Proto |int bcc_int_nmap_get(int busintline)

About | Get mapping from businterrupt line to an interrupt controller interrupt line.

Param |busi nt i ne [IN] Integer
Bus interrupt line number

Return |int.
Value Description
1.31 Interrupt controller interrupt line (1..31)
-1 Device or functionality not available
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 28

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

5.9.5. Interrupt service routines

BCC interrupt service routines (ISR) are convenient because they allow the user to specify C functions which are
called in response to an interrupt. The API handles extended interrupts transparently.

This part of the interrupt API is a higher level mechanism compared to the trap API. Section 5.9.7 describes how
the BCC trap API can be used to install low-level interrupt handlers.

Functions are provided for the user to install custom interrupt service routines. SPARC interrupts 1-15 and ex-
tended interrupts 16-31 are supported. It is possible to install multiple interrupt handlers for the same interrupt:
thisisreferred to asinterrupt sharing. All ISR handler dispatching is hidden from the user.

Itisnot allowed to call the interrupt service routine register/unregister functions from inside an interrupt handler.

Two sets of functions are available for registering and unregistering interrupt service routines. They differ in
memory allocation responsibility. Some memory is always needed when installing an | SR with the API described
in this section.

5.9.5.1. Automatic memory management

bcc_isr_register() andbcc_i sr_unregi st er () manage memory allocation automatically by using
mal | oc() andfree() internaly.

Table5.33. bcc_i sr_regi st er function declaration

Proto |void *bcc_isr_register(int source, void (*handler)(void *arg, int
source), void *arg)

About |Register interrupt handler

The function in parameter handl er isregistered as an interrupt handler for the given interrupt
source. The handler is called with arg and source as arguments.

Interrupt sour ce isnot enabled by thisfunction. bcc_i nt _unmask() can be used to enableit.

Multiple interrupt handlers can be registered for the same interrupt number. They are dispatched at in-
terrupt in the same order as registered.

A handler registered with this function should be unregistered withbcc_i sr_unregi ster ().

Param |sour ce [IN] Integer

SPARC interrupt number 1-15 or extended interrupt number 16-31.
Param |handl er [IN] Pointer

Pointer to software routine to execute when the interrupt triggers.
Param |ar g [IN] Pointer

Passed as first argument to handl er .

Return |Pointer. Status and ISR handler context

Value Description

NULL Indicates failed to install handler.

Pointer Pointer to ISR handler context. Should not be dereferenced by user. Used as input to
bcc_isr_unregister().

Notes |Thisfunction may call mal | oc() .

Table5.34. bcc_i sr_unr egi st er function declaration

Proto |int bcc_isr_unregister(void *isr_ctx)

About |Unregister interrupt handler

It isonly allowed to unregister an interrupt handler which has previously been registered with
bcc_isr_register().

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 29

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Interrupt sour ce isnot disabled by this function. The functionbcc_i nt _mask() can beused to
disableit.

Param |i sr_ct x [IN] Pointer

ISR handler context returned bcc_i sr_regi ster().
Return |int.

Value Description

BCC_OK |Handler successfully unregistered.
BCC_FAIL |Failed to unregister handler.

Notes |Thisfunctionmay call f r ee()

Following is an example on how bcc_i sr_regi ster() and bcc_i sr_unregi ster() can beused to
install two interrupt handlers on different interrupt numbers sharing the same function but with different ISR
unique data. mal | oc() andfree() arecaled by the BCC library.

#i ncl ude <bcc/ bcc. h>

/* User interrupt handler */

extern void nyhandl er(void *arg, int source);
/* 1SR uniuqge data */

extern int arg0O, argi;

static const int | NTNUVA
static const int | NTNUVB

N

int isr_reg_exanpl e(void)

{ .
int ret;
/* 1SR handl er contexts for using the bcc_isr_ API. */
void *ictx0, *ictxl;

ictx0 = bcc_isr_register(I NTNUMA, nyhandl er, &arg0);
if (NULL == ictx0) {
return BCC_FAIL;
}
ictxl = bcc_isr_register(I NTNUMB, nyhandl er, &argl);
if (NULL == ictxl) {
bcc_i sr_unregister(ictx0);
return BCC_FAIL;
}
bece_i nt _unmask(| NTNUMA) ;
bce_i nt _unmask(| NTNUMB) ;

bce_i nt _mask(1 NTNUVB) ;
bce_i nt _mask(1 NTNUMR) ;
ret = bcc_isr_unregister(ictx0);
if (BCC.OK !=ret) {
return ret; /* Failure */

}
ret = bcc_isr_unregister(ictxl);
if (BCC.OK !=ret) {

return ret; /* Failure */

}

return ret;

}

5.9.5.2. User memory management

bcc_isr_register_node() andbcc_i sr_unregi ster_node() areavailablefor caseswherethe us-
er want to control all memory allocations in the application. Associated with these two functionsis a type named
struct bec_isr_node. An instance of such type (ISR node) should be allocated and initialized by the user and pro-
vided to bcc_i sr_regi st er_node() . Node structure data provided to bcc_i sr_regi st er _node()

must not be touched or deallocated by the user until bcc_i sr_unr egi st er _node() hasbeen called withthe
samenode. After that, theuser isfreeto reuse or deallocate the node. Thel SR node must residein writable memory.

struct bcc_isr_node {
void *__private;
int source;
void (*handler)(
void *arg,
int source

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 30

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

)
void *arg;

s

Table 5.35. bce_isr_node data structure declaration

source Interrupt source number
handler User ISR handler
arg Passed as parameter to handler

Table5.36. bcc_i sr_regi st er _node function declaration

Proto |int bcc_isr_register_node(struct bcc_isr_node *isr_node)

About | Register interrupt handler, non-allocating

Thisfunctionissimilartobcc_i sr_regi st er () with the difference that the user is responsible
for memory management. It will never call mal | oc() . Instead the caller hasto provide apointer to a
preallocated and initialized ISR node of type struct bce_isr_node.

The memory pointedto by i sr_node shall be considered owned exclusively by

the run-time between the call tobcc_i sr_regi st er _node() and afuture
bcc_isr_unregi ster_node() . It meansthat the memory must be available for this time and
must not be modified by the application. The memory pointedto by i st _node must be writable.

This function should be used to install interrupt handlers in applications which want full control over
memory allocation.
Param |i sr_node [IN] Pointer

Pointer to User initialized ISR node. Thefieldssour ce, handl er and optionally the ar g shall be
initialized by the caller.

Return |int.

Value Description

BCC _OK [Handler installed successfully.
BCC_FAIL |Failed to install handler.

Table5.37. bcc_i sr_unr egi st er _node function declaration

Proto |int bcc_isr_unregister_node(const struct bcc_isr_node *isr_node)

About |Unregister interrupt handler, non-allocating

Thisfunctionissimilartobcc_i sr_unr egi st er () with the difference that the user is responsi-
ble for memory management. It is only allowed to unregister an interrupt handler which has previous-
ly been registered withbcc_i sr_regi st er _node().

Param |i sr_node [IN] Pointer

Same asinput parameter tobcc_i sr_regi ster _node().
Return |int.

Value Description

BCC_OK |Handler successfully unregistered.

BCC_FAIL |Failed to unregister handler.

Followingisanexampleonhowbcc_i sr_regi ster_node() andbcc_i sr_unregi ster_node() can
be used to install an interrupt handler oninterrupt 3. No callstomal | oc() orfree() areperformed.

#i ncl ude <bcc/bcc. h>

/* User interrupt handler */

extern void nyhandl er(void *arg, int source);
/* 1 SR uniuge data */

extern int argo;

/* 1 SR node all ocated by user */

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 31

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

struct bcc_isr_node inode0;

int isr_reg_exanpl e(void)
{ .
int ret;
i node0. source = 3;
i node0. handl er = nyhandl er;
i node0. arg = &argo0;

ret = bcc_isr_register_node(& node0);
if (BCCOK!=ret) {

return ret;
}

bce_i nt _unmask(3);

bce_i nt _mask(3);
ret = bcc_isr_unregister_node(& node0);

return ret;

}
5.9.6. Interrupt nesting

Interrupt nesting can be enabled, disabled or set to a user custom config with the interrupt nesting API. This API
maintains the SPARC PSR. PI L field. More fine-grained masking can be done by programming the interrupt
controller as described in Section 5.9.2.

Interrupt nesting is disabled by default in BCC, meaning that an interrupt service routine can not be preempted
by any other interrupt. The function bcc_i nt _enabl e_nesti ng() enables nesting such that an ISR can
be preempted by higher level processor interrupts. bcc_i nt _di sabl e_nesti ng() can be used to disable
nesting again.

Thefunctionbcc_i nt _nest count () returnstheinterrupt nest level, starting at 0 when the function iscalled
outside of interrupt context.

SPARC interrupt level 15 is non-maskable.

Table5.38. bcc_i nt _nest count function declaration

Proto |int bcc_int_nestcount (void)

About | Get current interrupt nest count

Return |int.
Value Description
0 Cdller isnot in interrupt context
1 Caller isinfirst interrupt context level
n Caller isin n:th interrupt context level

Table5.39. bcc_i nt _di sabl e_nest i ng function declaration

Proto |int bcc_int_di sabl e _nesting(void)
About |Disable interrupt nesting

After caling thisfunction, PSR. PI L will be raised to Oxf (highest) when an interrupt occurs on any
level.

Return |int. BCC_OK

Table5.40. bcc_i nt _enabl e_nest i ng function declaration

Proto |int bcc_int_enabl e_nesting(void)

About |Enable interrupt nesting

After caling thisfunction, PSR. PI L will be raised to the current interrupt level when an interrupt oc-
curs.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 32

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

] Return \ int. BCC_OK]

5.9.6.1. Advanced configuration

This subsection describes custom interrupt nesting configuration. It contains advanced information which is prob-
ably not needed for most application. Standard interrupt nesting control as described in Section 5.9.6 is assumed
to cover most use cases.

When a user 1SR which has been registered with bcc_i sr_regi st er () istriggered by hardware, the BCC
interrupt dispatcher routine is executed as part oft he interrupt trap handling. The dispatcher sets (raises) the
SPARC register PSR. PI L toanew interrupt request level before reenabling trapsand calling the user | SR handler.
The new PSR. PI L level is determined by the BCC interrupt dispatcher executed as part of the interrupt trap
handling. BCC maintains a private table which maps for each interrupt level, a future (raised) interrupt level to
set while the ISR executes.

bcc_int_disabl e nesting() setsthe mapping from each interrupt level (1..15) to the highest interrupt
level (15). bcc_i nt _enabl e_nesti ng() sets the mapping from each interrupt level (1..15) to the same
interrupt level (1..15).

A custom interrupt nesting mapping can be set with thefunctionbcc_i nt _set _nesti ng() . Itisfor example
possible to program either of interrupt levels 1..7 to always raise Pl L to 7, making the corresponding service
routines mutually exclusive, while still allowing interrupts on level 8 and above. For the purpose of the example,
interrupt levels 8..15 could be mapped linearly to enable normal nesting on level 8 and above. This could be
utilized to setup hardware supported task switching, where each task isrelated to a unique interrupt request level.
The following example illustrates this setup.

#i ncl ude <bcc/ bec. h>
/*
* Processor interrupts 1..7 set PIL=7 to lock out interrupt 1..7.
* Processor interrupts 8..15 nest as nornal.
*/
voi d custom nesting(void)
{
bcc_enabl e_nesting();
for (int i =1; i <=7; i++) {
bcc_set _nesting(1l, 7);
}
}

Table5.41. bcc_i nt _set _nest i ng function declaration

Proto |int bcc_int_set _nesting(int pil, int newil)

About | Configure interrupt nesting

Configuresin detail how the SPARC processor interrupt level is set when an interrupt occurs. After
calling this function, PSR. PI L will be raised to newpi | when an interrupt occurs on level pi | .
Param |pi | [IN] Integer

PSR. PI L (0..15) level to configure.

Param [newpi | [IN] Integer

New value for PSR. PI L (0..15) during interrupt at level pi | . newpi | must be equal to or greater
than pi | parameter.

Return |int.

Value Description
BCC OK |Success
BCC_FAIL |lllegal parameters

5.9.7. Low-level interrupt handlers

Thetrap API can be used to install low-level interrupt handlers for SPARC interrupts 1-15. It is done by calling
bcc_set _trap() withthett parameter set to interrupt number plus0x10. Thiswill disable the norma BCC
ISR management for this interrupt request level. Support for interrupt sharing on the CPU interrupt level is also
on the responsibility of the user when using Low-level interrupt handlers.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 33

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

It is the implementer's responsibility to ensure that volatile registers are saved and restored by the trap handler.
The handler should set PSR. PI L=0xf to avoid interrupt nesting if traps are being enabled by the handler.

The following example illustrates how alow-level interrupt handler can beinstalled.

#i ncl ude <bcc/ bcc. h>

/* Function for installing lowlevel interrupt (trap) handler */
int set_|ow evel _int_handler(int source, void (*handler)(void))

{
if (source <1]| 15 < source) {
return BCC _FAIL;

}

return bcc_set_trap(0x10 + source, handler);

}

extern void trap_handl er_for_int1l(void);
int isr_|low evel _exanpl e(void)
{

int ret;

ret = set_|low evel _int_handler(1, trap_handler_for_intl);
printf("ret=%\n", ret);

return ret;

}

5.9.8. Interrupt timestamping

The IRQ(A)MP interrupt controller can be implemented with interrupt timestamping functionality. GR740 and
GR716 support this. BCC provides an API for programming the timestamping hardware.

Thefunctionbcc_ti mestanp_avai |l () isused to determine the number of timestamp register sets known to
BCC. Thetimestamping API described in thissection can be used only if thisfunction returnsavalue of 1 or higher.

Most functions in the timestamping APl take a parameter, t s_no, which describes the timestamping regis-
ter set to operate on. This parameter must zero or greater, and must be strictly less than the return value of
bcc_timestanmp_avail ().

The function bcc_tinmestanp_restart() is used to start and restart monitoring of an interrupt line.
bcc_ti mest anp_st at us() canbeusedtodetermineif timestamping registersfor assertion and acknowledge
have beenlatched and thefunctionsbcc_t i nest anp_get _ass() andbcc_ti nmestanp_get _ack() can
be used to read out the latched values.

bcc_tinmestanp_get cnt () isused to read the current value of the free-running timestamping counter. It
can be used by the user interrupt service routine to measure the time from hardware interrupt assertion to program
response.

Table5.42. bcc_ti nest anp_avai | function declaration

Proto |int bcc_tinmestanp_avail (void)

About | Return number of timestamp register sets available

Return |int. Number of timestamp register sets available

Table5.43. bcc_ti mestanp_restart function declaration

Proto int bcc_tinmestanp_restart(int ts_no, int source)
About |Restart timestamping

Param |t s_no [IN] Integer

Timestamp register set to use for this stamp

Param |sour ce [IN] Integer
Interrupt controller interrupt line to monitor

Return |int.
Vaue Description
BCC_OK Success
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 34

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

] \ BCC_NOT_AVAILABLE |Device or functionality not available]

Table5.44. bcc_ti mest anp_st at us function declaration

Proto uint32 t bcc_tinestanp_status(int ts_no)
About | Get timestamping status

The function is used to determine whether assertion, acknowledge or both have been stamped for the
timestamp register set.

Param |t s_no [IN] Integer

Timestamp register set

Return |uint32_t. A combination of the masks BCC_TIMESTAMP_ASS and BCC_TIMESTAMP_ACK
Value Description

BCC_TIMESTAMP_ASS |Assertion Stamped (S1)

BCC_TIMESTAMP_ACK |Acknowledge Stamped (S2)

Table5.45. bcc_t i mest anp_get _ass function declaration

Proto |uint32_t bcc_tinestanp_get _ass(int ts_no)

About |Return value of interrupt assertion timestamp register

Param |t s_no [IN] Integer
Timestamp register set

Return |uint32_t. Value of interrupt assertion timestamp register

Table5.46. bcc_ti mest anp_get ack function declaration

Proto |uint32_t bcc_tinestanp_get ack(int ts_no)

About | Return value of interrupt acknowledge timestamp register

Param |t s_no [IN] Integer
Timestamp register set

Return |uint32_t. Value of interrupt acknowledge timestamp register

Table5.47.bcc_t i mest anp_get _cnt function declaration

Proto |uint32_t bcc_tinestanp_get _cnt(void)

About |Return value of interrupt timestamp counter register

Return |uint32_t. Value of interrupt timestamp counter register

Below is a code snippet which demonstrates one way of using the timestamping API. nyi sr () isan interrupt
service routine registered on the interrupt line which is monitored.

The sequence of events from interrupt assertionto ISR is:
1. Peripheral assertsinterrupt line. Assertion timestamp register latches.
2. CPU starts processing the interrupt trap. Acknowledge timestamp register latches.
3. Execution entersmyi sr () . Program (CPU) reads timestamp counter register.

#i ncl ude <bcc/tinestanp. h>

static volatile uint32_t nycnt;

voi d nyisr(void *arg, int source)
{

nycnt = bcc_tinestanp_get_cnt();

}

int tinestanp_exanpl e(int stampnum int intnum
{

uint32_t ass, ack, cnt;

uint32_t v;

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 35

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

assert (stanpnum < bcc_tinmestanp_avail ());

bcc_tinestanmp_restart(stanpnum intnum;
/* Wait for timestanp ack to latch */
do {
v = bcc_tinestanp_status(stanpnun;
} while (0 == (v & BCC_TI MESTAMP_ACK)) ;

/* Coll ect the nunbers */

ass bcc_tinmestanp_get _ass(stanpnun);
ack bcc_tinmestanp_get _ack(stanpnun);
cnt mycnt;

/* Do interesting stuff with ass, ack, cnt */

return O;

}
5.10. Asymmetric Multiprocessing API

This API provides basic functionality for programming AMP systems. The communication primitive isinter-pro-
cessor interrupts, which can be used as a basis for shared memories and higher level services. Functionsin this
API typicaly operate using a LEON interrupt controller such as| RQVP or | RQ(A) MP.

The functionsin the AMP APl are available even when running on a single-processor system. AMP services are
not served in this case, but the function return values are guaranteed to be consistent (typically returning with
status BCC_NOT_AVAI LABLE).

5.10.1. Processor identification

The number of processors in the system can be retrieved with the function bcc_get _cpu_count () and the
ID of the current processor isretrieved withbcc_get _cpui d()

Table 5.48. bcc_get _cpu_count function declaration

Proto |int bcc_get cpu_count (void)

About |Get number of processor in the system.
Return |int.

Number of processorsin the system or -1 if unknown.

1isreturned on single-processor systems.

Notes |Thisfunction will return -1 if the run-timeis not aware of the interrupt controller.

Table 5.49. bcc_get _cpui d function declaration

Proto |int bcc_get cpuid(void)

About |Get ID of the current processor.

The first processor in the system has ID 0.
Return |int.

ID of the current processor.

0 isreturned on single-processor systems.

5.10.2. Inter-processor control

Another processor in a multiprocessor LEON system can be started by calling bcc_start _processor ().
Inter-processor interrupts (IP1) are sent to other processorswithbcc_send_interrupt ().

Table5.50. bcc_start _processor function declaration

‘Proto ‘i nt bcc_start _processor(int cpuid) ‘

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 36

https://www.frontgrade.com/gaisler

rRONTGRADE

About | Start a processor.

Gaisler

Param |cpui d [IN] Integer
The processor to start.

cpui d must bein theinterval from0Otoget _cpu_count () -1.

Return |int.
Value Description
BCC _OK Success.

BCC NOT_AVAILABLE |Processor or device not available.

Table5.51. bcc_send_i nt errupt function declaration

Proto int bcc_send_interrupt(int level, int cpuid)

About |Forcean interrupt level on a processor.

Param |l evel [IN] Integer
Interrupt request level (1..15).

Param |cpui d [IN] Integer
The processor to interrupt.

cpui d must bein theinterval fromOtoget _cpu_count () -1.

Return |int.
Value Description
BCC _OK Success.

BCC NOT_AVAILABLE |Processor or device not available.

5.11. Default trap handlers

Table5.52 liststhetrap handlerslinked into the SPARC trap table by default in aBCC application. Individual trap

handlers can be added or replaced with the trap API described in Section 5.8.
See the SPARC V8 specification for trap definitions.

Table 5.52. Default trap handlers for BCC 2.2.4

tt Description

0x00 Reset. Handledby __bcc_trap_reset _nvt or__bcc_trap_reset _svt.
0x05 Window overflow. Handled by __bcc_trap_w ndow overfl ow.

0x06 Window underflow. Handled by __bcc_t rap_wi ndow_under f | ow.

Ox11..0x1f |Interrupt. Handledby __bcc_trap_interrupt.

0x83 Flush windows. Handled by __bcc_trap_fl ush_wi ndows.
0x89 Set PSR. PI L. Handledby __bcc trap_sw set _pil.
others Force processor into error mode.

5.12. APl reference

This section lists al BCC library user API functions with references to the related section(s). The APl is aso

documented in the source header files of the library, see Section 5.1.

Table 5.53. BCC library user API structure reference

Type Section
struct bee_isr_node 5.95.2
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 37

https://www.frontgrade.com/gaisler

rRONTGRADE

Table 5.54. BCC library user API function reference

Gaisler

Prototype Section
uint32_t bcc_tiner_get _us(void) 53
int bcc_timer_tick_ init_period(uint32_t usec_per_tick) 531
voi d bcc_flush_cache(void) 5.4
voi d bcc_flush_icache(void) 54
voi d bcc_flush_dcache(voi d) 54
void bcc_set _ccr(uint32_t data) 54
uint32 t bcc_get ccr(void) 5.4
uint32_t bcc_| oadnocache(uint32_t *addr) 55
uint16 t bcc_l oadnocachel6(uint16_t *addr) 55
uint8 t bcc_| oadnocache8(uint8_t *addr) 55
void bcc_dwzero(uint64_t *dst, size_ t n) 55
uint32_t bcc_get psr(void) 5.6.1
void bcc_set psr(uint32_t psr) 56.1
int bcc_get _pil (void) 56.1
int bcc_set pil(int newpil) 56.1
uint32_t bcc_get tbr(void) 5.6.2
void bcc_set tbr(uint32_t tbr) 56.2
uint32_t bcc_get _trapbase(void) 56.2
i nt bcc_power _down(voi d) 5.6.3
int bcc_fpu_save(struct bcc_fpu state *state) 5.7
int bcc_fpu restore(struct bcc_fpu state *state) 5.7
int bcc_set trap(int tt, void (*handler)(void)) 5.8,
5.9.7
int bcc_int_disabl e(void) 59.1
voi d bcc_int_enabl e(int plevel) 5.9.1
int bcc_int_mask(int source) 59.2
i nt bcc_int_unmask(int source) 592
int bcc_int_clear(int source) 593
int bcc_int _force(int level) 5.9.3
int bcc_int_pend(int source) 59.3
int bcc_int_map_set(int busintline, int irgnpintline) 594
int bcc_int_map_get (int busintline) 594
void *bcc_isr_register(int source, void (*handler)(void *arg, int 5951
source), void *arg)
int bcc_isr_unregister(void *isr_ctx) 5951
int bcc_isr_register_node(struct bcc_isr_node *isr_node) 5.9.5.2
int bcc_isr_unregi ster_node(const struct bcc_isr_node *isr_node) 5952
i nt bcc_int_nestcount(void) 5.9.6
int bcc_int_disabl e_nesting(void) 5.9.6
i nt bcc_int_enabl e_nesting(void) 596
int bcc_int_set _nesting(int pil, int newil) 5.96.1
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 38

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Prototype Section
int bcc_tinestanp_avail (void) 598
int bcc_tinestanp restart(int ts _no, int source) 5.9.8
uint32 t bcc_tinestanp_status(int ts_no) 5.9.8
uint32_t bcc_tinestanp_get_ass(int ts_no) 5.9.8
uint32_t bcc_tinestanp_get_ack(int ts_no) 5.9.8
uint32_ t bcc_tinestanp_get _cnt(void) 5.9.8
int bcc_get cpu_count (void) 5.10.1
i nt bcc_get _cpuid(void) 5.10.1
int bcc_start_processor(int cpuid) 5.10.2
int bcc_send_ interrupt(int level, int cpuid) 5.10.2

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 39

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

6. AMBA Plug&Play library

6.1. Introduction

This chapter describes a user library used to probe devices on systems with an on-chip GRLIB AMBA Plug& Play
bus. AMBA Plug&Play is generaly available on LEON3 and LEON4 systems. For more information on the
AMBA Plug& Play concept, seethe GRLIB IP Library User's Manual.

The library is used by the BCC run-time to find the console device, timer devices and the interrupt controller.
Application programmers can also use the library to probe for hardware devices to pair with device drivers.

6.1.1. AMBA Plug&Play terms and names

Throughout this chapter some software terms and names are frequently used. Below is a table which summarizes
some of them.

Table 6.1. AMBA Layer terms and names

Term Description

AMBAPP, AMBA PnP | AMBA Plugé&Play bus. See AHBCTRL and APBCTRL in GRLIB GRIP docu-
mentation.

device AMBA AHB Master, AHB Slave or APB Slave interface. Theanba_ahb_i nfo
and anba_apb_i nf o structures describe any of the interfaces.

core A AMBA |P core often consists of multiple AMBA interfaces but not more than
one interface of the same type.

bus An AMBA AHB or APB bus.

Vendor ID A unique number assigned to a device vendor. Seei ncl ude/ becc/
anmbapp_ids. h

DevicelD A unique number assigned to a device by a device vendor. Seei ncl ude/ becc/
anbapp_ids. h

1O area Address to aread-only table containing Plug& Play information for all attached de-
viceson the bus. It istypically located at address Ox FFFFFO00 on LEON sys-
tems.

scanning Process where the AMBA PnP busis searched for al or some AMBA interfaces.

depth Number of levels of AHB-AHB bridges from topmost AHB bus.

6.1.2. Availability

Functionsdescribed in this chapter have structure definitionsand prototypesin the C header filebcc/ anbapp. h.
Thefunctionsare compiledin| i bbcc. a and are available per default when linking with the GCC front-end.

6.2. Device scanning

BCC AMBA Plug&Play API is based around a device scanning routine in the function anbapp_vi sit (). It
performs recursive, depth first, scanning for devices.

The anmbapp_vi si t () routine can visit devices during the scanning, based on a user defined device match
criteria. A visit is performed by the routine calling a user supplied function with information on the current device
asfunction parameters. After the user function has inspected the device information, it can decide to terminate the
scanning process altogether or let the scanning routine continue with the next match. The ambapp_vi sit ()
function does not allocate dynamic or static memory and does not build a device tree. It stores temporary infor-
mation on the stack as needed.

Example use cases for the scanning routine include:

e Count number of AMBA Plug& Play devices/buses in the system.
» Build adevicetreein memory.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 40

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

» Find a specific device on a user criteria.

The main scanning function ambapp_visit() is defined in Table 6.2 and the callback interface is described in
Table 6.3.

Table 6.2. ambapp_vi si t function declaration

Proto |uint32_t ambapp_visit(uint32_t ioarea, uint32_t vendor, uint32_t
device, uint32_t flags, uint32_t naxdepth, uint32_t (*fn)(void *in-
fo, uint32_t vendor, uint32_t device, uint32_t type, uint32_t depth,
void *arg), void *arg)

About |Visit AMBA Plug& Play devices

A recursive AMBA Plug& Play device scanning is performed, depth first. Information records are
filled in and supplied to a user function on a user match criteria. The user match criteriais defined by
the parametersvendor , devi ce andf | ags.

When the user function (f n) returns non-zero, the device scanning is terminated and
ambapp_vi si t () returnsthe return value of the user function.

Theanbapp_vi si t () function does not allocate dynamic or static memory: al state is on the
stack.

Param |i oar ea [IN] Address

|O areaof busto start device scanning.

Param [vendor [IN] Integer
Vendor ID to visit, or O for all vendor IDs.

Param |devi ce [IN] Integer
Device ID to visit, or O for all device IDs.

Param |f | ags [IN] Integer

Mask of device typesto visit AMBAPP_VISIT_AHBMASTER, AMBAPP_VISIT_AHBSLAVE,
AMBAPP_VISIT_APBSLAVE).

Param |maxdept h [IN] Integer

Maximum bridge depth to visit.

Param |f n [IN] Pointer

User function called when a device is matched. See separate description on how the function is called.
Param |f n_ar g [IN] Pointer

User argument provided with each call to fn(). anmbapp_vi si t () never dereferencesf n_ar g.
Return |uint32_t.

Value Description

0 fn() did never return non-zero.

non-zero fn() returned thisvalue.

Table 6.3. anbapp_vi sit_user _f n function declaration

Proto |uint32_t fn(void *info, uint32_t vendor, uint32 t device, uint32_t
type, uint32_t depth, void *arg)

About |User callback called by ambapp_vi si t () when adeviceis matched.
Param |i nf o [IN] Pointer
Pointer to struct amba_apb_info or struct amba_ahb_info as determined by the parameter t ype.

Param [vendor [IN] Integer
Vendor ID for matched device

Param |devi ce [IN] Integer

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 41

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Device ID for matched device

Param |t ype [IN] Integer

Type of matched device (AMBAPP_VISIT_AHBMASTER, AMBAPP_VISIT_AHBSLAVE,
AMBAPP_VISIT_APBSLAVE).

Param |dept h [IN] Integer

Bridge depth of matched device. First depth is 0. The depth decrements with one for each recursed
bridge.

Param |ar g [IN] Pointer

User argument which was given to ambapp_vi si t () asparameter f n_ar g.
Return |uint32_t.

Value Description

0 Continue scanning

non-zero | Abort scanning and propagate return valueto anbapp_vi si t () for return.

6.3. User callback

6.3.1. Criteria matching

User criteriafor calling the user callback function for adeviceisdefined by theanbapp_vi si t () function pa-
rametersvendor ,devi ce andf | ags. Toscanfor aspecific devicetype (AHB master, AHB slave, APB dave),
the bitmasks AMBAPP_VI SI T_AHBMASTER, AMBAPP_VI SI T_AHBSLAVE, AMBAPP_VI SI T_APBSLAVE
shall be used. A value of 0 for vendor or devi ce matches all vendor IDs and device | Ds respectively.

Visiting all devices can thus be accomplished by the following parameter values:

#i ncl ude <bcc/ anbapp. h>

vendor 0;

devi ce 0;

flags = AVBAPP_VI SI T_AHBMVASTER | AMBAPP_VI SI T_AHBSLAVE | AMBA_VI S| T_APBSLAVE;

6.3.2. Device information

Parameters to the user callback (Table 6.3) provides information to the user about the current device. To derefer-
ence thei nf o parameter, it must first be cast to the appropriate type, based on thet ype parameter as of table
Table 6.4.

Table 6.4. Data structures for device information

Valueof t ype Typeofinfo

AVBAPP_VI SI T_AHBVMASTER |struct anba_ahb_info *
AVBAPP_VI SI T_AHBSLAVE |struct anmba _ahb info *
AVBAPP_VI SI T_APBSLAVE |struct anba_apb_info *

The device information structures contain data decoded from the AMBA AHB and APB Plug& Play records as
defined in Table 6.5, Table 6.6 and Table 6.7. The raw configuration record entry isalso availableviatheent ry
field. Seethe GRLIB IP Library User's Manual for more details on the record fields.

struct anmba_apb_info {
uint8_t ver;
uint8_t irq;
uint32_t start;
uint32_t mask;
const struct anbapp_apb_entry *entry;

}

Table 6.5. amba_apb_info data structure declaration

ver Device version
irq Device interrupt number
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 42

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
start Device address space start
mask Device address space mask
entry APB Plug& Play configuration record

struct anba_ahb_bar {
uint32_t start;
uint32_t mask;
uint8_t type;
¥

Table 6.6. amba_ahb_bar data structure declaration

start Device address space start

mask Device address space mask

type Bank type
2 AHB memory space
3 AHB I/O space

struct anba_ahb_info {
uint8_t ver;
uint8_t irgq;
struct anba_ahb_bar bar [AVBA_AHB_ NBARS] ;
const struct anbapp_ahb_entry *entry;

s

Table 6.7. amba_ahb_info data structure declaration

ver Device version

irg Device interrupt number

bar Bank Address Register

entry AHB Plug& Play configuration record
6.4. Example

The following example extracts the base address and interrupt number of thefirst APBUART devicein the system
and then aborts the scanning by returning non-zero.

#i ncl ude <stdio. h>
#i ncl ude <bcc/ anmbapp. h>
#i ncl ude <bcc/anmbapp_i ds. h>

uint32_t nmyarg = 0;

/* User callback which is called on devices matched with anbapp_visit(). */
uint32_t nmyfn(void *info, uint32_t vendor, uint32_t device, uint32_t type, uint32_t depth, void *arg)

struct anba_apb_info *apbi = info;

if (type !'= AVBAPP_VI SI T_APBSLAVE) {
printf("Unexpected type=%\n", type);
return O;

}

printf("vendor=%, device=%, type=%, depth=%, arg=%)\n",
vendor, device, type, depth, arg);

printf("ver=%, irqg=%, start=9%98x, mask=%08x\n",
info->ver, info->irq, info->start, info->mask);

return apbi->start;

}

/* This function returns address of first APBUART, or 0. */
uint32_t ex0(void) {
const uint32_t ioarea =
const uint32_t nmaxdepth
uint32_t ret;

OxFFFFFO00;
=4

ret = anbapp_visit(
i oarea,
VENDOR_GAl SLER,
GAl SLER_APBUART,
AVBAPP_VI SI T_APBSLAVE,
maxdept h,

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 43

https://www.frontgrade.com/gaisler

rRONTGRADE

nyfn,
&myar g
)
return ret;

}

More examples are provided with the BCC distribution.

6.5. APl reference

Gaisler

This section lists al AMBA Plug&Play API functions with references to the related section(s). The APl is aso

documented in the source header files of the library, bcc/ anbapp. h.

Table 6.8. AMBA Plug& Play library data structure reference

Type Section
struct amba_apb _info 6.3.2
struct amba_ahb_bar 6.3.2
struct amba_ahb_info 6.3.2
Table 6.9. AMBA Plug& Play library function reference
Prototype Section
uint32_t anbapp_visit(uint32_t ioarea, uint32_t vendor, uint32_t 6.2
device, uint32_t flags, uint32_t maxdepth, uint32_t (*fn)(void
*info, uint32_t vendor, uint32_t device, uint32_t type, uint32_t
depth, void *arg), void *arg)
uint32_t anbapp_visit_user_fn(void *info, uint32_t vendor, uint32_t [6.2,6.3
device, uint32_t type, uint32_t depth, void *arg)

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 44

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

7. Board Support Packages

This chapter describes the Board Support Packages (BSP) distributed with BCC. Information on how to override
the BSP behavior is available in Chapter 8. The default BSP, named LEON3, is compatible with most systems.

7.1. Overview

BSPsprovidean interface between BCC and target hardware through initialization code specific to target processor
and a number of device drivers. Console, timer and interrupt controller drivers are supported in all BSPs.

A BSPisselected with the GCC option - gbsp=bspnane, wherebspnane specifiesany of the BSPs described
in this chapter. The option is typically combined with - ncpu=cpunarne and optionally - nsof t - f | oat and
- gnano.

If option - gbsp=isnot given explicitly, then - gbsp=I eon3 isimplied.

It is important that the - gbsp=, - ntpu=, - nfi x and - nsof t - f | oat options are given to GCC both at the
compile and link steps. - gsvt isonly applicableto linking.

Selecting a BSP with - gbsp=, does not automatically infer any of the - ncpu=, - nfi x- or - nsof t - f | oat
options. See Appendix A and Appendix B for recommended compiler options.

Applications are by default linked to RAM address 0x40000000 by most BSPs. This can be changed with the
GCC option - W, - Tt ext , addr to link anywhere in the range 0x40000000 to Ox7f f f f f f 0. Some BSPs
have other default link addresses which is noted in the corresponding section in this chapter.

Each BSP provides memory definitionsfor thelinker scriptsto use, suitablefor thetarget device. In somesituations
there is a need to link applications to non-standard locations. A special linker script named | i nkcnds- any is
provided for thispurpose. | i nkcnds- any isavailablefor all BSPs. The following example links an application
to address 0x ABCDEOOQO:

$ sparc-gaisler-elf-gcc -T |inkcnds-any -W, - Tt ext, OXABCDEOOO hello.c -0 hello.elf

All BSPsexcept the LEON3 BSP havelink time configuration of device base addresses needed by the BCC drivers.
The LEON3 BSP uses AMBA Plug& Play to probe devices. A BCC console driver is attached to APBUARTO by
default, timer driver isattached to GPTI MERO and theinterrupt controller driver isattachedto | RQVP/I RQ(A) VP.
Chapter 8 describes how device base addresses can be customized by the user.

7.2. LEON3

The LEON3 BSPisageneral BSP compatible with most LEON3 based systems. Thisisthe only BSP which uses
AMBA Plug& Play to discover peripheral devices at startup.

Linking with - gsvt ispossibleif SVT is supported by the target system.

7.3. LEONS

The LEON5 BSP is a general BSP compatible with most LEONS based systems.
Linking with - gsvt ispossibleif SVT is supported by the target system.

7.4. GR712RC

The GR712RC BSP is customized for the GR712RC component.

The following linker scripts are available, selectable with the GCC - T option.

I i nkcnds (default) Application islinked to RAM address 0x40000000.
I i nkends-ahbram Application islinked to on-chip RAM with BCH error-correction at address
0xa0000000.

Memory map descriptions and a linker script template for creating custom linker scripts are available in bsp/
gr712rc/linkcmds. nenory andbsp/ gr 712r ¢/ | i nkcnds. base.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 45

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Linking with - qsvt is supported.
7.5. GR740

The GR740 BSP is customized for the GR740 component.

The following linker scripts are available, selectable with the GCC - T option.
I i nkends (default) Applicationislinked to RAM address 0x00000000.

Memory map descriptions and a linker script template for creating custom linker scripts are available in bsp/
gr 740/ 1 i nkcnds. nenory andbsp/ gr 740/ 1 i nkcnds. base.

Linking with - gsvt is supported.
Interrupt remap functions are available (Section 5.9.4) aswell as the interrupt timestamp API (Section 5.9.8).

The BSP selectsthe interrupt controller to use by probing the IRQAMP Interrupt Controller Select Registers. For
AMP applications, the assignment could be programmed by an earlier boot loading stage.

7.6. GR716
The GR716 BSP is customized for the GR716 component.

Partial WRPSR as described in SPARC-V8 Supplement, SPARC-V8 Embedded (V8E) Architecture Specification
is used by BCC when possible. The interrupt remap functions described in Section 5.9.4 are available. Linking
with - gsvt and - gnano isrecommended to reduce code size.

Memory map descriptions and a linker script template for creating custom linker scripts are available in bsp/
gr 716/ 1 i nkcrds. nenory and bsp/ gr 716/ | i nkcnds. base.

7.6.1. Supported features

Table 7.1. GR716 BSP feature support in BCC

Hardwar e functionality Reference | Comments
FPU (LEON) 24 Supported
1/O switch matrix 7.6.4.1 Support for setting pin functionality and LV DS configura-
tion.
Brownout N/A No driver support
PLL 7.6.4.3 Supported
UART 4.1,5.3, BCC console driver in polling mode with FIFO support.
8.2 Used for C standard library st di n, st dout andst derr.

By default uses APBUARTO which can be redirected. Sup-
ported by the BCC timer API.

UART 13 Dedicated raw data communication driver. Supports interrupt
and polling mode.

On-chip Dual-port Memory with N/A No driver support. Initialized by on-chip boot loader and
EDAC Protection GRMON.
Fault Tolerant PROM/SRAM Mem- | N/A No specific support. See example in [GR716-MINI-QSG].
ory Interface
1553B Bus Controller 21 Supported
1553B Bus Monitor 23 Supported
1553B Remote Terminal 22 Supported
ADC N/A No driver support. See examplein [GR716-MINI-QSG].
DAC N/A No driver support
CAN 2.0B 12 Supported
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 46

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Hardwar e functionality Reference | Comments

Clock gating unit 19 Supported

GRDMAC N/A No driver support

General Purpose 1/0 Port 17 Basic functionality supported. Pulse sequencer and sampler
is not supported.

Pulse Width Modulation Generator |N/A No driver support

PacketWire N/A No driver support

SpaceWire Interface and RMAP 11 Supported

target

SpaceWire TDP N/A No driver support

General Purpose Timer Units 42,83 BCC timer driver. Used for C standard library time related
functions. Typically dedicated to GPTIMERO subtimerO.

General Purpose Timer Units 16 Low-level driver for operating on GPTIMER. Supports all

timer cores. Latch/set functionality not supported. One timer
instance is used by the C library time functions. Watchdog

API

12C to AHB bridge N/A No driver support

12C Master 15 Supported

12C dave N/A No driver support

Interrupt Controller 59 Supported by the BCC Interrupt API

LEON3 Statistics Unit N/A No driver support. Typically accessed with dedicated GR-
MON command.

Memory Scrubber 25 Supported

SPI to AHB bridge N/A No driver support

SPI Controller 14 SPI master mode is supported. SPI slave mode is not sup-
ported.

SPI for Space Slave Controller N/A No driver support

SPI Memory Controller N/A No driver support

AMBA Protection Unit 24 Supported

AHB Status Registers 18 Supported User can install hook to handle errors.

Boot ROM N/A No driver support. See examplein [GR716-MINI-QSG].

Table 7.2. Resources

GR716-MINI-QSG |GR716-MINI Quick Start Guide [https://www.gaisler.com/index.php/products/compo-
nents/gr716]

7.6.2. Boot ROM

A BCC 2 application is ready to be used with the GR716 embedded boot loader (BOOTROM). There are two
main cases:
* Application is copied from persistent memory or network to RAM by the BOOTPROM. Executes from
volatile RAM.
» Application executes from persistent memory (external ROM or SPI). Thisisalso called direct boot or ROM
resident execution.

It is also possible to disable the GR716 embedded boot loader by configuring GR716 strap signals. In this case,
the application should contain its own boot loader. See Section 2.16.

The following subsections describe how to link a BCC application for use with the GR716 BOOTPROM. Infor-
mation on how to load the application and configure the GR716 for image boot from persistent memory, network
boot or direct boot from persistent memory is available in the GR716 Data Sheet and User's Manual.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 47

https://www.frontgrade.com/gaisler
https://www.gaisler.com/index.php/products/components/gr716
https://www.gaisler.com/index.php/products/components/gr716
https://www.gaisler.com/index.php/products/components/gr716

rRONTGRADE

Gaisler

7.6.2.1. Executing from volatile RAM

To link an application for executing from local instruction RAM, the default linker script shall be used:
I i nkends (default) Application islinked to CPU local RAM: instruction RAM at address
0x31000000 and data RAM at address 0x30000000.

The following example links an application for storage and execution in internal RAM:
$ sparc-gaisler-elf-gcc -gbsp=gr716 -ncpu=leon3 -qgsvt -gnano main.o -o main.elf

Thelinker option- T | i nkcnds isnot required since the linker script is selected by default.
7.6.2.2. Executing from persistent memory

To link an application for executing from persistent memory such as an external ROM or SPI, use one of the
following linker scripts:

i nkcmds-extprom Application islinked to external ROM starting at address 0x01000000.
. dat a is copied from PROM to on-chip data RAM at BCC run-time initial-
ization. . bss isalso put in on-chip data RAM.

i nkends-spi 0 Sameas! i nkcnds- ext pr om but for first SPI controller memory mapped
at address 0x02000000.

i nkcnds-spi 1 Sameas| i nkcnds- ext pr om but for second SPI controller memory
mapped at address 0x04000000.

The following example links an application for storage and execution in external ROM:
$ sparc-gaisler-elf-gcc -gqbsp=gr716 -nctpu=leon3 -qgsvt -qgnano -T |inkcnds-extprommin.o -o nain.elf

Investigation of thelink output showsthat . dat a isin ROM space at load time, but referenced inlocal dataRAM
at execution time. Copying of . dat a from ROM to RAM is done automatically by the BCC initialization.

$ sparc-gaisler-elf-objdunp -h main.elf

main. el f: file format el f32-sparc
Sect i ons:
I dx Nane Si ze VMVA LMA File off Algn
0 .text 000021d0 01000000 01000000 00010000 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .rodata 00000090 010021d0 010021d0 000121d0 2**3
CONTENTS, ALLCC, LOAD, READONLY, DATA
2 .ext.data 00000000 40000000 40000000 000201e8 2**0
CONTENTS
3 .data 000001e8 30000000 01002260 00020000 2**3
CONTENTS, ALLOCC, LOAD, DATA
4 .bss 000001c8 300001e8 01002448 000201e8 2**2
ALLCC

An example on how to build an application as described in this subsection is included with the BCC distribution
in the directory exanpl es/ gr 716_r onr es.

7.6.2.3. System clock

The GR716 BSP supports the full frequency operating range of GR716. A time base has to be set by the user
for the BCC time functions to operate correctly when the application is started from the GR716 embedded boot
loader. The supported way to do thisisto define aglobal constant variablenamed __bsp_sysfr eq initialized
with the system clock frequency in MHz. This ensures a known time base for the BCC timer driver and sets the
BCC console driver baud to 38400.

On aGR716 clocked at 20 MHz, the following example configures the system clock.

/* GR716 clocked at 20 MHz */
const unsigned int __bsp_sysfreq = 20*1000*1000;

The definition can be put in any C file which is linked with the application. Notethat __bsp_sysfreq must
not be declared st at i c.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 48

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

BSP initiaization related to the system clock are implemented by the custom timer and console initialization
functions and can be overridden. For more details, see Section 8.2.1 and Section 8.3.1.

7.6.3. APBUART initialization

The BCC GR716 BSP default run-time initialization has support for initializing up to one APBUART controller.
The purpose of thisisto make the C standard library st di n, st dout andst der r available. Thisinitialization,
if performed, happens just before mai n() iscalled.

APBUART initiaization in the GR716 BSP will be performed depending on the val ues of the application variable
__bsp_sysf req AND therun-time state of the control register, according to the following:
__bcc_con_init:
IF (__bsp_sysfreq != 0) AND (APBUART debug forwarding is disabled) THEN
Confi gure APBUART scal er
Enabl e APBUART transnitter and receiver
Di sabl e debug forwarding
ELSE

Do not touch APBUART registers
ENDI F

APBUART debug forwarding is disabled by hardware on GR716 power-on. APBUART debug forwarding is
enabled by GRMON when the startup-option -u is used, or when enabled viathe forwar d enable command.

This means that:

* When application is started from GRMON with debug forwarding enabled, then BCC will not re-initialize
the APBUART.

» When applicationisstarted from embedded boot ROM or power-on reset, then BCC will initialize APBUART
if __bsp_sysfreqissetintheapplication.

The APBUART in question above is APBUARTO by default. It is possible to redirect to another APBUART by
defining __bcc_con_handl e as described in Section 8.2. It is also possible to override the default behavior
described above defining an application-specific versionof __bcc_con_ini t () asdescribed in Table 8.1.

Source code for the default GR716 console initialization logic is available in the file src/1i bbcc/ bsp/
gr 716/ bsp_con_i ni t. c installed with BCC 2.2.4.

7.6.4. Chip specific API

A set of functions are provided by the BCC GR716 BSP for controlling chip specific functionality. The are in-
cluded in the BSP rather than as separate peripheral drivers since the functionality is tied to the GR716 and do
not generalize to other components.

7.6.4.1. Pin configuration

gr 716_set _pi nfunc() configuresthe GR716 /O switch matrix. Thefunctionisavailableviabcc/ gr 716/
pin.h

Table7.3.gr 716_set _pi nf unc function declaration

Proto |int gr716_set pinfunc(unsigned int pin, unsigned int node)

About | Configure one IO switch matrix entry

This function updates onefield in SYS. CFG. GPx to configure the specified pin with the functionali-
ty requested by mode.

Parameters pi n and node are range checked before registers are written.

Param |pi n [IN] Integer

GPIO pin number (0..63)
Param |node [IN] Integer

Any of | O MODE_* (0..0xe)

Return |int.
Value ’ Description
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 49

https://www.frontgrade.com/gaisler

0 Success

rRONTGRADE

Gaisler

nonzero

Range check failure

A set of definesfor | O MODE_* isavailable;

Table 7.4. 10 modes

Symbol Description

| O_ MODE_GPI O GPIO

| O_MODE_APBUART APBUART

| O MODE_NVEM Memory controller (FTMCTRL)
| O_MODE_PW PacketWire

| O MODE_1553 MIL-STD-1553B

| O_MODE_CAN GRCAN

| O_MODE_| 2C 12C

| O_MODE_SPI SPI

| O_MODE_ADC ADC

| O_MODE_DAC DAC

| O_MODE_PVWM GRPWM

| O MODE_SPW SpaceWire (redundant interface on second port)
| O MODE_SPI 4S SPI for Space master and slave

| O_MODE_AHBUART AHBUART for DMA bus

| O_MODE_TDP SpaceWire TDP (GRSPWTDP)

Example 7.1. Configure GPIO63 for CAN withgr 716_set _pi nfunc()

#i ncl ude <bcc/ gr 716/ pin. h>

gr 716_set _pi nfunc(63,

| O_MODE_CAN) ;

7.6.4.2. LVDS configuration

gr716_set _| vdsfunc() configuresthe on-chip LVDS transceivers. Availableviabcc/ gr 716/ pi n. h

Table7.5.gr 716_set _| vdsf unc function declaration

Proto |int gr716_set | vdsfunc(unsigned int node)

About |Configure LVDS transceivers

The node parameter is range checked before registers are written.

This function updates SYS. CFG. LVDS to configure the on-chip LV DS transceivers with the func-
tionality requested by node.

Param |nmode [IN] Integer
Any of LVDS_MODE_* (0..3 or 8)

Return |int.
Value Description
0 Success
nonzero Range check failure

Table 7.6. LVDS modes

Symbol

Description

LVDS_MODE_SPW

SpaceWire (primary interface on first port)

BCC-UM
Jul 2023, Version 2.2.4

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

50

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Symbol Description

LVDS_MODE _SPI 4S SPI for Space master and slave

LVDS MODE_SPI M SPI master controller (not the SPI memory controller)
LVDS_MODE_SPI S SPI slave controller

LVDS_ DI SABLE Disable LV DS transceiver

Example 7.2. Configure LVDSfor SpaceWirewithgr 716_set | vdsf unc()
#i ncl ude <bcc/gr716/ pi n. h>

gr716_set _| vdsf unc(LVDS_MODE_SPW ;
7.6.4.3. PLL configuration

gr716_pll _config() configures the PLL. PLL lock can be proved with the function
gr716_pl 1 _i sl ocked.gr716_syscl k() andgr 716_spwcl k() configuresthe clocks.

These functions are available viabcc/ gr 716/ pl | . h

Table7.7.gr 716_pl | _conf i g function declaration

Proto |int gr716_pll_config(int ref, int cfg, int pd)
About |Configure PLL

Mode#1: (pd = 1)
 This mode powers down the PLL

Mode#2: (pd =0,ref =X andcfg=Y)
 This mode powers on the PLL
» Select the external input pin withr ef
« The PLL must be configure the correct input frequency with cf g.

Param |ref [IN] Integer
Select external input pin as PLL input. Can be any of the following values;

Value Description

PLL REF SYS CLK External System clock
PLL_REF_SPW CLK External SpaceWire clock

Param |cf g [IN] Integer

Input frequency for PLL input. Can be any of the following values;

Value Description
PLL_FREQ 50MHZ 50 MHz
PLL_FREQ 25MHZ 25 MHz
PLL_FREQ 20MHZ 20 MHz
PLL_FREQ 12MHZ 12 MHz
PLL_FREQ 10MHZ 10 MHz
PLL_FREQ 5MHZ 5MHz
Param |pd [IN] Integer
PLL power down. Can be any of the following values;

Value Description
PLL_PONER DOWN Power down PLL (1)
PLL_POMNER ENABLE |Enable PLL (0)

Return |int.
Vaue Description
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 51

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

0 Success

nonzero Failure

Table 7.8. gr 716_syscl k function declaration

Proto |int gr716_syscl k(int source, int div, int duty)

About |Configure system clock

Mode#1: (source =0,di v=0andduty =0)
» This mode bypasses the divider and uses the external clock pin asinput

Mode#2: (source =X,di v=Y andduty =0)
« Thismode divides the clock source with 2*Y and selects as system clock
e Y canbeintherangefrom1to 31

Mode#3: (source =X,div=Y andduty =2)
» Thismode divides the clock source with Y and selects as system clock.
» Clock duty cycleis set by dut y in number of system clocks
* Y can beintherange from 2 to 31 and must be at least 1 greater than X
e Z canbeintherangefrom 1to 30

Param |sour ce [IN] Integer
Clock source. Can be any of the following values,

Value Description
CLK_SOURCE_CLK External System clock
CLK_SOURCE_SPW PLL input
CLK_SOURCE_PLL PLL output

Param |di v [IN] Integer

Clock divisor

Param |duty [IN] Integer

Clock duty cycle

Return |int.
Value Description
0 Success
nonzero Failure

Table 7.9. gr 716_spwel k function declaration

Proto |int gr716_spwcl k(int source, int div, int duty)

About |Configure SpaceWire clock

Mode#1: (source =0,di v=0and duty =0)
» This mode bypasses the divider and uses the external clock pin asinput

Mode#2: (source =X,di v=Y andduty =0)
« Thismode divides the clock source with 2*Y and selects as SpaceWire clock
e Y can beintherangefrom 1to 31

Mode#3: (source =X,div=Y andduty =2)
« Thismode divides the clock source with Y and selects as SpaceWire clock.
» Clock duty cycleis set by dut y in number of clocks
e Y can beintherange from 2 to 31 and must be at least 1 greater than X
e Z canbeintherangefrom 1to 30

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 52

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Param |sour ce [IN] Integer
Clock source. Can be any of the following values;
Value Description
SPWCLK SOURCE_CLK |PLL input
SPWCLK_SOURCE_PLL |PLL output

Param |di v [IN] Integer
Clock divisor

Param |dut y [IN] Integer
Clock duty cycle

Return |int.
Value Description
0 Success
nonzero Failure

Table 7.10.gr 716_pl | _i sl ocked function declaration

Proto |int gr716 pll _isl ocked(void)
About |Determineif PLL iscurrently locked
This function returns the current value of the PLL lock output.
Return |int.
Value Description
1 PLL islocked
0 PLL isnot locked
7.7. LEONZ2

The LEON2 BSP is compatible with LEON2 systems such as AT697, AT697E and AT697F.

AMBA Plug&Play configuration records are not implemented in most LEON2 systems, so the BCC AMBA
Plug& Play library described in Chapter 6 may not be used. But since the hardware information is resolved by the
BSP, and can be overridden as described in Chapter 8, this does not affect normal operation of BCC on LEON2

systems

- qsvt isnot supported on LEON2.

7.8. AGGA4

The AGGA4 BSPissimilar to the LEON2 BSP. It has a different console driver which is transparent to the user.
Recommended compiler options for AGGA4 can be found in Appendix A.

BCC-UM

Jul 2023, Version 2.2.4

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
53

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

8. Customizing BCC

The BCC run time environment is designed to fit a wide range systems and to require little user intervention to
get an application up and running. In some situations however, the default behavior may need customization to
fulfill specific application requirements on device discovery, console drivers, size optimization, etc. This chapter
describes how the BCC run time environment can be customized.

8.1. Introduction

Three types of hardware devices are managed by the BCC run time: console, timer and interrupt controller. The
management consists of software drivers which are embedded in the application when needed. Some of the C
library functionality and the BCC user library depend on these drivers.

For most BSPs, the run time relies on hardware devices residing in predefined address spaces. For the general
LEON3 BSP, the device hardware address space | ocations are probed with hel p of the AMBA Plug& Play scanning
routines described in Section 6.2. Device initialization and possible probing takes place before entry to mai n()

and can be overridden by the application as described later in this chapter.

Functionsand variables used for user run time customization are declared in the header filebcc/ bcc_par am h.
This header file should be included in any application which overrides the default BCC behavior.

To override the default implementation of a BCC function or variable, an object file containing the same symbol
name as the overridden function or variable should be linked with the application. The prototypesinbcc/ becc. h
and bcc/ becc_par am h can be used for type checking. An exampleis provided in Section 8.5.

8.2. Console driver
The BCC console driver isused for C library input and output on st di n, st dout and st derr.

8.2.1. Initialization

A variablenamed __bcc_con_handl e isreserved for the console driver to use. The content of thisvariableis
consoledriver specific, and will typically contain an addressto some hardwareregister space. A BSPisresponsible
for initializing this variable, which can be done either at compile time or run time. The function (hook) named
__bcc_con_init() iscalled before mai n() as part of the BCC run time initialization. A BSP can use the
hook functiontoinitialize__bcc_con_handl e, for example by using the AMBA Plug& Play library. Table 8.2
describes how BSPs initialize the handle.

Table8.1. __bcc_con_init function declaration

Proto |int _ bcc_con_init(void)

About |Probe and initialize the console

A default implementation of this function is provided by the BSP. It can be overridden by the user.
Return |int. BCC_OK on success

Table 8.2. Implementation of __bcc_con_i nit ()

BSP Description of __bcc_con_init ()

| eon3 The AMBA Plugé& Play library (Chapter 6) is used to scan for APBUART devices.
__bcc_con_handl e isassigned with the address of the register area of the first AP-
BUART device.

others __bcc_con_init() isempty.
__bcc_con_handl e isaninitialized variable with value determined at link time.

8.2.2. Input and output functions

Character input is handled by thefunction __bcc_con_i nbyt e() andoutputby _bcc_con_out byt e().

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 54

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table8.3. __bcc_con_i nbyt e function declaration

Proto |char _ bcc_con_i nbyte(void)

About |Read the next character from console
Return |char. The read character

Table8.4. bcc_con_out byt e function declaration

Proto |int _ bcc_con_outbyte(char c¢)

About |Write acharacter on the console
Param |c [IN] Character
Character to output

Return |int. O on success

8.2.3. Customization

e Console redirection is performed by redefining __bcc_con_handl e, for example in a custom,
__bcc_con_init() hook. See Section 8.5.

e Thel/Ofunctions__bcc_con_i nbyte() and__bcc_con_out byt e() canalso beoverridden. They
shall typically makeuseof __bcc_con_handl e.

8.2.4. Clibrary 110

All console input fed to the C library goes viar ead() and the output goes out withwr i t e() . An application
can override these functions to get even more control on the console 1/O (for example to implement terminal
specific handling). Seethe newlib C library documentation for more information onhow r ead() andwri t e()
are defined. The function call flow isillustrated below.

e [terminal] -> __bcc_con_inbyte() ->read() ->[C library stdio]

e [Clibrary stdio] -> wite() -> __bcc_con_outbyte() -> [term nal]

Both st dout and st derr areoutputviawrite() and__bcc_con_out byt e().

8.3. Timer driver

The BCC timer driver is used for C library time related functions such ascl ock() andti me() (ti me. h). It
isalsousedforget ti neof day() andti mes().

8.3.1. Initialization

Initializationissimilar to the consoledriver (Section 8.2.1). Thetimer handleisnamed __bcc_ti mer _handl e
and theinitialization hook isnamed __bcc_ti nmer _i ni t (). Table 8.6 describes how BSPsinitialize the han-
de

Table85. bcc _tiner _init function declaration

Proto |int _ bcc_tinmer_init(void)

About |Probetimer hardware and initialize timer driver

A default implementation of this function is provided by the BSP. It can be overridden by the user.
Return |int. BCC_OK on success

Table 8.6. Implementation of __bcc_timer_init()

BSP Descriptionof __bcc_tinmer_init()

| eon3 The AMBA Plugé& Play library (Chapter 6) is used to scan for GPTI MER devices.
__bec_ti mer _handl e isassigned with the address of the register area of the first
GPTI MERdeviceand __bcc_ti nmer _i nt errupt isassigned to the timersinterrupt
number.

others __bec_timer_init() isempty.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 55

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

BSP Descriptionof __bcc_tinmer _init()
__becc_timer _handleand__bcc_tiner_interrupt areinitialized variables
with values determined at link time.

8.3.2. Time access functions

Current time in microseconds is returned by the functionbcc_ti nmer _get us() asdescribed in Section 5.3.
Thisfunction is used by the C library for time related functions (t i me. h).

8.3.3. Customization

The BCC timer driver initialization can be overridden by redefining the functions__bcc_tiner _init() and
bcc_timer_get _us().

8.4. Interrupt controller driver

The BCC interrupt controller driver is managing the BCC interrupt and AMP user API described in Section 5.9
and Section 5.10.

8.4.1. Initialization

Initialization is similar to the console driver (Section 8.2.1). The interrupt controller driver handle is named
__bcc_i nt_handl e andtheinitialization hookis__bcc_int _i nit (). Table8.8 describeshow BSPsini-
tialize the handle.

Table8.7. __bcc_int_init function declaration

Proto |int _ bcc_int_init(void)

About | Probe interrupt controller hardware and initialize interrupt controller driver

A default implementation of this function is provided by the BSP. It can be overridden by the user.
Return |int. BCC_OK on success

Table 8.8. Implementation of __bcc_int _init()

BSP Description of __bcc_int _init()

| eon3 The AMBA Plug& Play library (Chapter 6) is used to scan for | RQVP/I RQ(A) MP de-
vices. __bcc_i nt _handl e isassigned with the address of the register area of the first
interrupt controller device.

If theinterrupt controller has support for multiple internal interrupt controllers
(I RQ(A) MP),then __bcc_i nt _handl e will be adjusted to match the | RQ(A) VP In-
terrupt Controller Select Registers for the executing CPU.

Extended interrupt number is probed and assigned to the global variable
__becc_int_irgnp_eirqg.

others __bec_int_init() isempty.

__bcc_i nt_handl e isaninitialized variable with value determined at link time.

__bec_int_irgnp_eir g dependsonif the target system supports extended interrupt.

8.4.2. Access functions

Most of the functionality of the BCC interrupt and AMP API is implemented by the interrupt controller driver
in the corresponding BSP.

8.4.3. Customization

The BCC interrupt controller driver initialization can be overridden by redefining the __bcc_int _init()
hook or __bcc_int _handl e.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 56

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

On systems which support extended interrupts (most LEON3 and LEON4 systems) the variable
__bcc_int_irgnp_ei rqcanalsoberedefined. (Itsvalue can be determined by reading an interrupt controller
register.)

BCC interrupt and AMP services are tightly connected with the interrupt controller driver. There is no interface
specified for overriding these services. Customization would typically require a re-implementation of all BCC
interrupt and AMP API routines. (For details, seethe sourcecodeinl i bbcc/ shar ed/ i nt errupt/ directory
of the BCC source distribution).

8.5. Initialization override example

The following example illustrates how the console, timer and interrupt controller initialization can be overridden
on a GR740 system.

#i ncl ude <stdio. h>
#i ncl ude <bcc/ bcc. h>
#i ncl ude <bcc/ bcc_param h>

/* Forced initialization for GR740. */

int _ bcc_con_init(void) {
__bcc_con_handl e = 0xff900000;
return O;

}

int __bcc_timer_init(void) {
__bcc_timer_handl e = 0xff908000;
__bcc_timer_interrupt = 1;
return O;

}

int _ bcc_int_init(void) {
__bcc_int_handl e = 0xff904000;
__bcec_int_irgmp_eirq = 10;
return O;

}

int main(void) {
puts("hello world");
return O;
}
The example can be compiled and linked by issuing the following command.

$ sparc-gaisler-elf-gcc -gbsp=gr740 -ncpu=l eon3 exanple.c -0 exanple
8.6. Initialization hooks
An additional set of user hooks are called during BCC initialization. They are named with numbers corresponding
with execution order. A higher number means closer to mai n() . Default implementations of these hooks are

empty and they can be overridden by the user.

Table8.9. bcc_i ni t 40 function declaration

Proto |void _ bcc_init40(void)

About |Called at start of reset trap before CPU initializations
e Trap handling is not available.

* Usp and % p are not valid (do not save/restore)

e save andr est or e instructions are not allowed
* svt/mvtis not configured.

e . bss sectionisnot initialized.

 Thisuser hook should be written in assembly.

Return |None.

Table8.10. __bcc_i ni t 50 function declaration

Proto |void _ bcc_init50(void)
About |Called at start of C runtimeinitialization (cr t 0)

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 57

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

» Trap handling is not available.

e Y%sp and % p are not valid (do not save/restore)
* save andr est or e instructions are not allowed
* . bss sectionisnot initialized.

e BCCdriversare not initialized.

 Thisuser hook should be written in assembly.

Return |None.

Table8.11. __bcc_i ni t 60 function declaration

Proto |void _ bcc_init60(void)

About |Called prior to BCC driver initialization

e Cruntimeisavailable.

» BCC driversare not initialized.

» Thisuser hook can be writtenin C.

» Console API, timer API and interrupt API are not available.

Return |None.

Table8.12. _bcc_i ni t 70 function declaration

Proto |void _ _bcc_init70(void)
About |Called asthelast step before mai n() iscalled.

¢ Cruntimeisavailable.
e Full BCC API isavailable.

Return |None.

The following example illustrates how the interrupt based timer service is activated by calling
bcc_timer_tick_ init_period() in __bcc_init70() before entry to main(). The timer
tick is configured for 100 tick interrupts per second. See Section 5.3.1 for more information on
bcc_timer_tick_ init_period().

#i ncl ude <stdio. h>

#incl ude <stdlib. h>

#i ncl ude <tine. h>

#i ncl ude <bcc/ bcc. h>
#i ncl ude <bcc/bcc_param h>

void __bcc_init70(void) {
int ret;

/* 100 tick interrupts per second. */
ret = bcc_tiner_tick_init_period(10 * 1000);
if (BCC.OK !=ret) {
exit (EXI T_FAI LURE) ;
}

}

int main(void) {
clock_t now,
while(1l) {
now = cl ock();
printf("clock() => %99u\n", now);

}
return EXI T_SUCCESS;
}

8.7. Disable . bss section initialization

As part of its startup code, the BCC C run time initializes the . bss segment with zeroes. This initial-
ization is disabled by defining a global variable named ___bcc_cfg_ski p_cl ear _bss. The vaue of
__bcc_cfg_ski p_cl ear _bss does not matter aslong as the symbol addressis not O.

Disabling . bss initialization can be useful when executing an application on asimulated system where execution
isslow and memory is already cleared.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 58

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

If the. bss section isnot preinitialized, then disabling the initialization will result in a non-functional program.

8.7.1. Example

The following example illustrates how initialization of the . bss section can be disabled.
#i ncl ude <bcc/bcc_param h>
int __bcc_cfg_skip_clear_bss;

int main(void)
{
return O;

}
8.8. Heap memory configuration

By default, the application heap starts at the end of bs's, and ends at the stack pointer. The heap can berelocated by
the user by assigning initialization valuestothevariables__bcc_heap_m nand__bcc_heap_max, declared
in the header filebcc/ bcc_param h.

The following example configures a heap of 16 MiB starting at address 0x60000000:

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <bcc/bcc_param h>

#defi ne MYHEAPSI ZE (16 * 1024 * 1024)
uint8_t *__bcc_heap_nin (uint8_t *) 0x60000000;
uint8_t *__bcc_heap_nmax (uint8_t *) 0x60000000 + MYHEAPSI ZE;

int main(void)
{
void *p;
p = mal |l oc(MYHEAPSI ZE / 2);
printf("malloc(% KiB) => %\n", MYHEAPSIZE / 1024, p);
free(p);
return O;

}

__bcc_heap_minand__bcc_heap_nax canoptionally be assigned by the application at run-time, but only
before any dynamic memory functions have been called. Theinitializationhook __bcc_i ni t 70() isasuitable
location.

To gain full control over heap alocation, the function sbr k() can be redefined by the user: see the Newlib C
library documentation, chapter System Calls for more information.

8.9. Parameters to mai n()

BCC by defaults setsar gc toOand ar gv[ar gc] to NULL given thenmai n() function prototype:

int main(int argc, char *argv[]);
The user can override this by defining the variables __bcc_argc and __bcc_ar gvp, declared in the header
filebcc/ bcc_param h.

Before the BCC run-time initialization calls mai n() , the following is performed:

e argc isassigned tothevalueof _ _bcc_argc
e argv isloaded from __bcc_ar gvp

Below is an example on how the interface can be used.
#i ncl ude <bcc/ bcc_param h>
char *nyargs[] = { "zero", "one", "two", "three", NULL };

int _ _bcc_argc = 4;
char *((*__bcc_argvp)[]) = &mwargs;

Theindirection of ar gv alowsfor overriding the mai n() parameters after the application is|oaded to memory
but before it starts. See the program and script insr ¢/ exanpl es/ mai nar g/ .

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 59

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

8.10. APl reference

This section lists API functions related to BCC customization with references to the related section(s). The API
is aso documented in the source header filebcc/ bcc_param h.

Table 8.13. BCC customization functions reference

Prototype Section
int _ bcc_con_init(void) 8.21
char __bcc_con_i nbyte(void) 8.2.2
int __bcc_con_outbyte(char c¢) 8.2.2
int __bcc_tiner_init(void) 8.3.1
uint32_t bcc_tiner_get _us(void) 8.3.2,
5.3
int _ _bcc_int_init(void) 84.1
void _ bcc_init40(void) 8.6
void _ bcc_init50(void) 8.6
void __bcc_init60(void) 8.6
void _ bcc_init70(void) 8.6
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 60

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

9. Support
For support contact the support team at support@gaiser.com.

When contacting support, pleaseidentify yourself in full, including company affiliation and site name and address.
Please identify exactly what product that is used, specifying if it is an IP core (with full name of the library
distribution archive file), component, software version, compiler version, operating system version, debug tool
version, simulator tool version, board version, etc.

The support serviceisonly for paying customers with a support contract.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 61

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Appendix A. Recommended GCC
options for LEON systems

This appendix contains recommended GCC options for LEON systems related to code generation and linking.

The recommendations apply to BCC version 2.2.4. Other LEON toolchains and other versions of BCC may have
other recommendations.

Table A.1. Recommended GCC options for BCC 2.2.4

System Recommended GCC options

GR740 - qbsp=gr 740 - ntpu=l eon3

GR712RC -qbsp=gr 712rc -nctpu=leon3 -nfix-gr712rc
GR716A -qbsp=gr 716 -nctpu=l eon3 -qgnano -qgsvt
GR716B - qbsp=gr 716b - ntpu=l eon3 -gnano -qsvt
UTG699E, UT700 -ntpu=l eon3 -nfi x-ut700
UT699/EPICA-NEXT, SCOC3 -ncpu=l eon -nfix-ut 699

LEON3FT and LEON3FT-RTAX systemswith |- ncpu=l eon3 -nfi x-b2bst -nfix-tn0013 -
SPARC V8 nul /di v based on GRLIB versions|gf i x-t n0018
up to and including build 4174.

LEON3FT and LEON3FT-RTAX systemswith |- ncpu=Il eon3 - nfi x-tn0013 -qfi x-tn0018
SPARC V8 mul /di v based on GRLIB version
4175 to 4206

LEONS3FT and LEON3FT-RTAX systemswith |- ncpu=Il eon3 - gfi x-tn0018
SPARC V8 mmul /di v based on GRLIB version
4207 to 4248.

LEON3FT and LEON3FT-RTAX systemswith |- ncpu=I eon3
SPARC V8 mmul /di v based on GRLIB version
4249 and later.

LEON5 - gqbsp=l eon5 - ntpu=l eon5

LEON3 systemswith SPARC V8 nrul /di v im- |- ncpu=l eon3
plemented without cache parity protection.

For GRLIB version up to and including 4206, also add
e -nfix-tn0013

LEON3/LEONSFT systems without SPARC V8| Same as above but change - ncpu=I eon3 to-

mul /di v. ncpu=l eon3v7.

AGGA4 - qbsp=agga4 -ntpu=l eon -nfix-at 697f
AT697 - qbsp=l eon2 -ntpu=l eon -nfi x-at 697f
Other LEONZ2 systems - qbsp=l eon2 - nctpu=l eon

Inadditionto Table A.1:

e - gnano can aways be used.

e -nmsoft-fl oat canaways be used.

¢ Systems which support SVT (single vector trapping) can use- qsvt .

 If no- ncpu= optionisgiven explicitly, then SPARC V7 code will be generated.
The BCC 2.2.4 run-time supports the GCC option - nf | at .

The recommendationsin Table A.1 apply to both compilation and linking.

Table A.2 describes the GCC - ntpu= options applicable to BCC 2.2.4. If no - ncpu= option is used, then -
ncpu=v7 isimplied.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 62

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table A.2. GCC - ntpu= optionsfor BCC 2.2.4
Option Description
- ncpu=v7 (or no - ntpu= option) no rmul /di v, nocasa
-nctpu=l eon nmul /di v, nocasa
- ncpu=l eon3 mul /di v, casa
- ncpu=l eon3v7 no rmul /di v, casa

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 63

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Appendix B. Recommended Clang
options for LEON systems

This appendix contains recommended Clang options for LEON systems related to code generation and linking.

The recommendations apply to BCC version 2.2.4. Other LEON toolchains and other versions of BCC may have
other recommendations.

Table B.1. Recommended Clang options for BCC 2.2.4

System Recommended Clang options

GR740 - qbsp=gr 740 - ncpu=gr 740

GR712RC -qbsp=gr 712rc -nctpu=gr712rc -nfix=gr712rc
GR716 -qbsp=gr 716 -nctpu=l eon3 -qgnano -qgsvt
UT699E, UT700 - gqbsp=l eon3 -ntpu=l eon3 -nfi x=ut 700
UT699/EPICA-NEXT, SCOC3 Unsupport ed

LEON3FT and LEON3FT-RTAX systems with | Contact support@gaisier.com.
SPARC V8 nul /di v based on GRLIB versions
up to and including build 4206.

LEON3FT and LEON3FT-RTAX systemswith |- gbsp=I eon3 - ntpu=l eon3 -qfi x-tn0018
SPARC V8 ul /di v based on GRLIB version
4207 to 4248.

LEON3FT and LEON3FT-RTAX systemswith |- gbsp=I eon3 - ncpu=l eon3
SPARC V8 mul /di v based on GRLIB version

4249 and |ater.

LEON3/LEONSFT systems without SPARC V8|Unsupport ed
mul /di v.

AGGA4 Unsupport ed
AT697 Unsupport ed
Other LEON2 systems Unsupport ed

In addition to Table B.1:
e - gnano can aways be used.
e -msoft-fl oat canaways be used.
e Systems which support SVT (single vector trapping) can use- qsvt .
 If no- ncpu= optionisgiven explicitly, then SPARC V8 code will be generated.
« Systems supporting the LEON-REX extension can use - nT ex.
The BCC 2.2.4 run-time supports the option - nf | at .

The recommendationsin Table B.1 apply to both compilation and linking.

Table B.2 describes the Clang - ncpu= options applicable to BCC 2.2.4. If no - ncpu= option is used, then
SPARC V8 with nul /di v is generated.

Table B.2. Clang - ncpu= options for BCC 2.2.4

Option Description
no - ntpu= option specified mul /di v, nocasa
-ntpu=l eon3, -ntpu=gr712rc, - nmul /di v, casa
ncpu=gr 740
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 64

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Appendix C. Moving applications
from BCC 1.0to BCC 2.2.4

This appendix contains notes and considerations for moving an existing BCC 1.0 application to BCC 2.2.4.

The main consideration is that the application interface to the BCC 2.2.4 run time library | i bbcc is not source
code compatible with the BCC 1.0 library | i bl eonbar e. A consequence for the application isthat it may need
to changeits LEON run timelibrary callsto match the new application interface. It also meansthat the application
source code should not use the BCC 1.0 header filesnamed asm | eon/ *. h.

An approach for moving an application to BCC 2.2.4 is outlined below:

1. Intheapplication build system, change all references of spar c-elf-gcc to spar c-gaisler-elf-gcc. Do the
same thing for other tools such as spar c-gaisler -elf-objdump and spar c-gaiser -elf-nm. Possibly also
remove BCC 1.0 from the PATH environment variable.

2. Eliminate compiler and linker options starting with - nrcpu=, - nv8, - nf i x-,-gf i x- and- nt une=
from the application build commands.

3. Select compiler and linker optionsfor thetarget LEON processor asdescribed in Appendix A. Add these
options to the application build commands.

4. Removeany occurrence of #i ncl ude <asm | eon/ | eon. h> from the application source code.

5. Build the application.

6. Resolvecompilation errorsasthey appear by updating the source code. Refer to Table C.1 and Chapter 5.

Iterate steps 5 and 6 until the application compiles and links.

Table C.1. Run timelibrary

BCC 1 functionality BCC 2 functionality Section
| eonbare_init_ticks(), bce_timer_tick_ init_period() 531
ticker _cal |l back
addti nmer () I i bdr v timer driver 16.1
catch_interrupt(), bcc_isr_register(), 5.95.1,
chai ned_catch_interrupt() 5952
Extended IrqCitrl Handled automatically 595
Interrupt nesting, nest edi r g bcc_enabl e_nesting(),bcc_set_nesting() 5.9.6
trapt abl e_genj np() bcc_set _trap() 5.8
Link option- | smal | Link option - gnano 4.5
Link option - gnoanmbapp Only the BSP named | eon3 probes devices by defaullt. 8

Probing can be customized as described in Chapter 8.
Link option- W, - mspar cl eon0 An arbitrary link address can be selected using - T 7.1

i nkcnds-any -W, - Tt ext, addr.

The GR740 BSP (- qbsp=gr 740) linksto address 0 by

default.

No specific considerations are needed for the C standard library, newlib. The current BCC version includes newlib
2.5.0 while BCC 1.0 ships with an older version.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 65

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Part |. Device drivers reference

The following sections describe the LEON4, LEON3 and LEONZ device drivers included in BCC 2.2.4. Each
driver is described in a separate chapter.

Driver samples can be found under src/ | i bdr v/ exanpl es and sr ¢/ exanpl es in the distribution.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 66

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table of Contents

10. DIIVES TEOISITAIION eeeiiiiiit ettt ettt ettt et ettt e et et et e et e e e aa e enaans 72
10.1. AULOMELIC FEQISITALION iieeiie i eeeeit ettt e ettt et et e e e et e e e eeenan s 72
10.2. Manual FreQISITAIION eeiete et ettt ettt e ettt e e e e e e e e aae 72
10.3. System specific device registration tableS oooiiiiiii i 73

11. GRSPW PaCKEL OriVEr oottt e et e e b 74
0 O o o (0 1o I PP PPTT R PPPPT 74

11.1.1. HardwWare SUDPPOIT ...oeeeeeeieii ettt ettt sttt e et e e e e eaa e e enanns 74
11.1.2. DIIVEF SOUMCES .eeueieeteneteeti et et e et ee e ettt e e e et e et et e et et e e et et e e e e et e e e e eba s 74
11.1.3. DIIVEN FEQISITALION iieietieeeeit e e ettt e e et e ettt e e ettt e e ettt e e ettt e e e ertaeeeenbaaeaees 74
L1114, EXAMPIES oo e 74
11.1.5. Known driver IMItalioNS iiiieiieiiii e 74
11.2. SOftWare deSIgN OVEIVIBIW ceieieieiii ettt ettt e et et e et e e e e e e eneens 74
L1201, OVEIVIEIW oottt ettt ettt et et e et et e et e e e eba s 74
11.2.2. INIGAIZALHON ..ttt et 75
11.2.3. LiNK CONEIOI ettt e e e et e e 75
11.2.4, TIME COUE SUPPOMT ..eneeeeiie ettt ettt et ettt e e et e e et e e et e e e e e e e aan s 75
11.2.5. RMAPR SUPPOIT ettt ettt et et e e e e e enes 75
11.2.6. POIT SUPPOM ..ttt ettt et et e 76
11.2.7. SpaceWire node address CONfigUIation oooeeiiiiiiiiiieeiie e 76
11.2.8. User DMA buffer handlingoooeiniii e 76
11.2.9. Driver DMA buffer handling cooovuiiiiii e 77
11.2.10. Polling mode and iNTEITUPES ciieiiieeeiii e e e e 78
11.2.11. Starting and Stopping DIMA oo e 78
11.3. DEVICE INEITACE ..iiiiti ettt 79
11.3.1. Opening and ClOSING DEBVICE iiiiiiiiieeie e 79
11.3.2. Hardware capabilitieS ocoiiiiieiiii e 80
11.3.3. LiNK CONIIOL ..ottt ettt e et ettt e e et e e e et e aees 81
11.3.4. Node address CoNfigUIation oooeeuuniieiii e 83
11.3.5. TIME-CONIOl COUBS ...ttt ettt e s 84
11.3.6. POIt CONMIOI ettt e e e e e e e e 85
11.3.7. RMAPR CONMIOl oottt ettt e e e eeaaans 86
11.3.8. Interrupt NANAIING ...coeeeeee e 87
114, DMA TNEEITACE oottt ettt e e et e e et eeeana s 87
11.4.1. Opening and closing DMA Channelsc..iiiiiiiiiiii e 87
11.4.2. Starting and Stopping DMA OPEration coeuviiiiiiiiiieeiiii e 0
11.4.3. Packet buffer desCription oouuioiiiiii e i
11.4.4, Packet DUFFEr TISES o.uuiiiiii e 92
11.4.5, SENAING PACKELS eiiii ettt ettt 93
11.4.6. RECEIVING PACKELS iieiiiti ettt e s 94
11.4.7. TranSMiSSION QUEUE SEAEUS ieeveneeeiii et e ettt e et et e e et e e e ne s 96
11.4.8. QUEUE FIUSNING ooeenei ittt e 97
L1149, SEAISHICS oevtueieeti ettt ettt ettt ettt et 97
11.4.10. DMA channel configurationocoeeuuieiiiiiei et 98
11.4.11. DMA Channel SEAIUS ceeeeiiiiiiiiiee ettt 100
L15. APL FEFEIENCE it 100
11.5.1. DEtA SITUCLUMNES ..ottt e et et e e e e e e e e eees 101
11.5.2. DEVICE TUNCLIONS ..oeuiiiiiii ettt 101
11.5.3. DMA fUNCHONS ..ottt e e 101
G = i o (o ST TT U PPTTR PP 102
12. GRCAN CAN AriVEN oot e et e et e e e et eeeab s 103
T2.1 INEFOOUCTION ettt ettt ettt e e et e e e et e e et et r e e e enbnreeeenbnaaeees 103
12,10 USEr INEEITACE ..o 103
12.1.2. DIIVEN FEQISITALION ueieitieeeeti e ettt ettt et e et e et eeeaea s 103
12.1.3. EXAMPIES oot 103
12.1.4. Known driver IMItalioNS iiiiiiiieiiiii e 103
12.2. Opening and ClOSING TEVICE ... oiiiiieiiii e 103
12.2.1. Static buffer allOCaION oooeiii e 104
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Géteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 67

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

D2AC @ o= 1o o I oo = 105
12.3.1. Starting and StOPPING ..vvueveneieieiie e e e e e e e e aas 105

2 @ o 1o 1= o 106
12.4.1. Channel SEIECION iii e 106
12.4.2. GRCAN TimiNg ParaMeELErS ...cvuiiiniiiiei i et re e e e e e e e e e aeees 107
12.4.3. GRCANFD Timing Para@meEterSc..ceuiieeieieeiieiiieeee e e e eaneene et eetaeanaeaneeanns 107

12,5, RECAIVE FIIIEIS et ettt e e e et e e e e e e aees 108
12.5.1. DELA SITUCIUMNES ..eictieeie et e et ettt e et et e et e e e et e e e e e en e e e eeneees 108
12.5.2. ACCEPLANCE fIllEr ..o 108
1253 SYNC FlOr e e 108

12.6. DIIVEr SEBHSHICS ..ueeuiiiteeet ettt ettt et et et e et e et et e e e e e e e et e e eanaeeens 108
12.7. DEVICE SEAIUS ..neeieiii et ettt ettt ettt e et ettt e et e e et e et e e e et et e e e ean e 109
12.8. CAN BUS tranSfers ..ot e et e ee e e 109
12.8.1. DELA SITUCIUMNES ..eietieeie ettt ettt et e e ettt e et e et e e e e e e e e e e e eenaees 109
12.8.2. TraNSMISSION ..ietiiiitee ettt et ettt et et et e e et e e et e e et e e et e e e aaaeeaneeees 110
2R TR T = oo o 111
12.8.4. BUS-Off TECOVEIY ooiiieii it e e e e anas 113
12.8.5. AHB EITON TECOVEIY ooiiiiiiiiiie e e e e e e e e e e en 113

22,0, I I UL APl e 113
e I g 1= g (0o 00 = = 1o o 113

T 07N o Bo (1Y PP UPPN 115
T I 1 oo [0 Tot (T o LS PP PP UPPRUPTTRN 115
G T B = g =K o] o I 115
13.3. Opening and ClOSING AEVICE ...ccuiiieiii i e e e e e e e e aaaas 115
134, SEAUS INTEITACE ..eeiei ittt e e e e e e e eees 116
13.5. Configuration INLEITACE ceeiii e e e e e e e e 116
13.6. NON-iNterrupt iNtEITACE ovuiiiie e e e e e e e e e e ees 118
13,7, INtErTUPL INTEITACE ooeeiie i e e e e 119
13.8. RESIIICHIONS ...ttt ettt et e e et e et e et e e et e et e eaa e aees 120
S o | = PSP PPTRPPP 121
T4.2. INEFOAUCTION ettt et ettt et et e et e et e et r e e et e e et e e et e e et e eanaas 121
R B L= g =K £ o] I 121
14.3. Opening and ClOSING AEVICE ...ccuiiiniii i e e e e e e e e e anas 121
TA.4. SEAIUS SEIVICE ouniiti ettt ettt et ettt et e e et et et e et e e et e e an e eeaeeeanas 122
14.5. Transfer ConfigUIralioncouiieiii e e e e e e e e e e e enaeens 122
14.6. Transfer INTEITACE ...oueiii et e e e e e 124
14.7. Synchronous TX/RX MOUE euiiiiiii et e e e e e ees 126
T4.8. SIAVE SEIECT ..o et eaa 127
e A == (g ot o] PP UPPTR PPN 127
15, 12C MASIEr AFVEE o et et e e e e 128
152, INEFOAUCTION .eee ettt et ettt et e e e et e et e et r e e e e e et e e et e e et e eanaas 128
1500, USEr INEEITACE .ottt e e e et e eaa e ees 128
15,02, FEAIUMES oottt et ettt et et e e e e aeen 128

15.2. DIiVEr reQISITAION ...ouiieeiiie ean 128
LG TR T 1 0] = 128
15.4. Opening and ClOSING AEVICE ...ccuiiiniei i e e e e e e e aaas 128
N ST @ o= 1 o] o I 4o o = 129
15.5.1. Starting and StOPPING ..vvueveieieieiie e e e e e e aas 129

LT @01 1= o 130
15.6.1. TranSaCtioN FEIFIES ieuueie ettt et e et et e et e e et eea e eanns 130
15,8, 2, SPEEA oo et aa e 131
15.6.3. Interrupt driven OPEration cceuiieeiii e e e 131
15.6.4. 12C address Witoeeie e 132

15.7. DIIVEL SEBHSHICS ..ueeeiiiii ettt ettt e e et et et e e et r et e e e e e et e e enneeeens 132
15.8. 12C DUS TraNSIEr ..eeeee et 133
15.8.1. DELA SITUCIUMNES ..eeetieiieet ettt et et et e e ettt e et e e e e e e e e e en e e e eneees 133
15,82, REOUESE ..ttt e ea s 134
15.8.3. RECIAIM oo et et et 135

15.9. SYNChronoUS EXamMIPIE ieei e 135

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023,

Version 2.2.4 68

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

G T I 0T S | = N 137
G 0 O 111 T [T 1 o S 137

I B A= g =K = o] I 137

SR T =Y o | 11 o = o 137
16.3.1. Opening and ClOSING GEVICE cvuiiiiii e e e 137

16.3.2. DEVICE CONIOI o.eieeiee e e e e e e e e e e e e e e eanaes 138

16.4. SUBLIMEY INLEITACE ..oeeiee e e e e e e ees 139
16.4.1. Opening and closing SUDLIMEr oeeiii e 139

16.4.2. SUDLIMEr CONLIOI ...oeiee e e e e e e e e e aeees 140

ST VAV (0 (o IR U o o g A 141

I T = o 1 oS 143

17, GPIO AIVEE oottt ettt et et e et e e e eans 144
0 O 111 T [T 1 o S 144

A B A= g =K £ o] I 144

17.3. Opening and ClOSING AEVICE ...ccuiiieiii e e e e e e e e aaas 144

R o g 11 (o I 11 = = N 145
17.4.1. Logical hit OPErationNSoiueiiiiiiei e e e e e e e e e 146

17.5. Interrupt Map INLEITAtE ... e e e e 147

18. AHB StaluS RegISIEr AriVEr .ooieii e e e e e e e e e e e e e e et e e e anas 149
IS 3 O 11T [T 1 o S 149

18.2. DIiVEr reQISIIaliON uiieeiie i e a e 149

18.3. Opening and ClOSING AEVICE ...ccuiiieiii e e e e e e e e e e e aaas 149

G = o 11 < 1 1 = = 150

18.5. INtErruPt SEIVICE FOULINE ...vuiiieieiee ea e e e an e e e eanns 150

19. CloCK Qating UNit AriVEr .oeieei e e e e e e e e e e e e et e e e et e e e aneeens 153
LS I O 11T [T 1 o S 153

19.2. DriVEr reQISIIaION u.iieiiee e e e e e e e e e e e e e e e e e aan 153

19.3. Opening and ClOSING AEVICE ...ccviiieiii i e e e e e e e e e aaaas 153

S @ o 1 o 154

R R o (= PSPPSR 155

19.6. Probe ClOCK gating SLALUS ...vvucieiiieiei e aa e ans 155

S B O o U 0 < 1 o P 155

20. GRIBE3B DIIVEI ettt ettt e e e et et e e e et et e e eaa s 157
2205 I 11 [1 o 157
20.1.1. Considerations and lIMItalioNS c..ovieiiiiiii e 157

20.1.2. GRI553B HaIrGWArEcceuiiiiiiiiiieei ettt et e 157

20.1.3. SOftWAre AriVEr ... e e 157

20.1.4. Driver RegiSIralioN cceuiiiieiiiei e e e e e 157

21. GRI1553B BUS CONrOlEr DIIVEr ..eeiiei e e e e e e e ea e eas 159
2 00 O 11 [1 o 159
21.1.1. GR1553B Bus Controller HardWareccoveeuiiiiiiieiii e ee e e e e 159

A S0 A1 = o | = 159

A RS R B TGNV g <o =i = 1 o 159

21.2. BC DeVice HandliNg ...ccuieniiiiii et e e e e e e e e e e e e e e ees 160
2020, DEVICE APl o e 160

ARSI B T= S ox] o) (o gl I = A o =T o | o N 162
2030 OVEIVIBIV oottt ettt e e e et e et e e et e e et e et et e e e et e e et e eanaaee 162

21.3.2. Example: steps for creating alistccovveeniiiiiii 163

A R I V.= o g == 164

A VT o) gl = 0 1 164

21.3.5. SIOt (DESCIIPLON) .oituiiineiieei et et e e et et e e e e e e e e e e e e e et e e e e e e e e e e eaeees 164

21.3.6. Changing a scheduled BC list (during BC-runtime)ccoccoveviiiiiiiiiiccneeeen, 165

21.3.7. CUSIOM MEMONY SEIUD ieiiiiiie it e e e e 165

21.3.8. Interrupt handling ooeii i 165

20,300, LISt APl e 166

22. GR1553B Remote Terminal DIiVEr iiii e e e e e et aaaas 174
27228 T 1 1o [1 oo 174
22.1.1. GR1553B Remote Terminal Hardwarecoooeoiiiiiiiiiiii e ee e eeen, 174

B B TGNV gl = o = i = 1 o o 174

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 69

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

22.2. USEN INTEITACE o.eiiiie et 174
22.2.0. OVEIVIBIV ottt et ettt ettt e et e e et e e et e et et e e e e e e et e eanaaee 174

22.2.2. Application Programming Interfaceoooiiiiiii i 177

23. GR1553B BUS MONITOr DIIVEL ..eeiiii ittt ettt et e et e et e e et e e e eaaeees 184
PG T I 1 0 oo L1 Tox o PP P TP PTUPPIN 184
23.1.1. GR1553B Remote Terminal Hardwarecocoooiiiiiiiiiiiiiiiceee e, 184

A R B TGNV gl <o = i = 1 o R 184

23.2. USEN INTEITACE o.eiiiieiiie e et 184
23.2.0. OVEIVIBIV oottt ettt e et ettt e e et e e et e e et e e e e e e e et e eaa e ee 184

23.2.2. Application Programming Interfaceoooiviiiiiiiii e, 185

24. GR716 memory proteCtion UNIt AriVEr ioeii e e e e e e e e eans 189
b2 I 1 0 oo [FTox o P PO P TP PTUPPIN 189
2400, USEr INTEITACE oeniei e et 189

24.0.2. FEALUIES ..ottt ettt ettt et et e e e 189

24.0.3. LIMITAIONS ..ietiieei ettt et et e e et e e e e e e et e e e e eaa s 189

R B LGNV G =0 = 11 o o 189
e I - 10 o - 189
24.4. Opening and ClOSING EVICE ...ovuiieiii e e e e e e e e een 189
S @ = = 1 o I 170 L= 190
24.5.1. Starting and SIOPPING cevuevrneeiiei i 190

N I = < PP PPTPPIN 191
24.7. Segment CONFIQUIBLION ii e e e e e e e e e et et e e e eanns 191
24.7.1. NUMDEr Of SEOMENES ..ieiii it e e e e e e e e e e e e e e eanns 191

24.7.2. DAB SITUCLUINES ieeeeiee e e ettt et e e e et e et et een e an e e eneenns 192

R T = PP 192

2474, GBL oo et 193

2 TV =0T ot 1 o] o 195
P2 T I 1 oo [FTox o o PP PT PPN 195
25. 1.1, HardWare SUPPOM oouiiniiiei e e et e e e e e e e e e et e e e e e e e e eaeees 195

25.1.2. DIIVEL SOUMCES .ietueitn ettt ettt e tat e e et e et e e et et e et et e e et e e et e e eaaa e e e e e ean e eetneeennaes 195

25.0.3. EXAMPIES oottt e een 195

25.2. SOftware deSIgN OVEIVIEIW ...eeiie i e e e e e e e e e et e et e e eenns 195
DT T B T Y G UL o P 195

25.3. Memory scrubber user iNterface ooviiiiii i 196
25.3.1. REIUM VAIUBS .ottt e e e e e e eanns 196

25.3.2. Opening and CloSING eVICE cviiiiiiii e e 196

25.3.3. Configuring the MEMONY FaNGE cvvnieiiei e e e e aaes 197

25.3.4. Starting/stoping different MOdES. cvviiiiii 198

25.3.5. Setting up error thresholdS co..eeeiii e 201

25.3.6. Registering @an ISR ..o 202

25.3.7. POlING the €ror StatUS ...ovuieeii e e 202

254, API TEFEIBINCE ooeiiiiii ettt eaas 203
26. SPACEWITE ROULEr DIIVEN ..o.iiiiiiiei e e e e e e e e e e e e e e e e et e e e eneaanns 205
ST I 1 oo [FTox o] o PP P TP PTUPPIN 205
26.2. DIIVEL SOUICES .euneeetieeeti et e et e e ettt e et e e et e ettt e et e e et e e et e et et ettt e e eb e e et e e et e eeanaeeees 205
225 T T 011 oo 205
26.4. Register and aCCESS OrVEL ..iuniiiiii e e e e e et e e e e e 205
26.5. SEtup routing tal@ oee e 206
26.5.1. GRT1BB ...oiiiiii it 209

26.6. LiNK Nandlingoooniiiii e 209
26.7. Error NandliNg .oeoeniiie e 212
26.8. TIME COUES ..oniiiiie ittt ettt ettt et et et e e et e e et e e et e e e e e eaneaees 213
26.9. INTEITUPE COOBS .vniiiiiiiieit ettt e e e e et e e e e e et e e e et e e s e e e e e e eaneeanes 214
26.10. CONfigUIe tIMEOULS iveiiieii i e et e e e e e e e et e e et e e e e e e e e e e e en s ean e eaneeaneeanes 216
26.11. Configure packet maX [ength ... 217
26.12. Configure PIug-and-Play cooiiiiiie e 217
26.13. Read OUL Credit COUNLEIS iiet ittt e ettt e e e et e et et et e e e e et e et e ean e eees 217
27. GR716B Real-Time ACCEEralor (RTA) .ivniiiiii e e e e e e e e eanas 219
A 4 T 1 01 oo [FTox o o P PP P TP PTUPPINN 219

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023,

Version 2.2.4 70

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
27.0.0. USEr INTEITACE oeeiiiiiie et 219
27.0.2. FEALUIBS ..ot ieee ettt ettt ettt ettt ettt eaa s 219
27.1.3. HardWare SUPPOM ...oeeieii e e e e e e e e e e et e e e e e e e e e e e eaneannas 219
A = 14 o = 219
27.3. Software design CONSIAEraLIONS uuiiieei e e e e e e e eeans 219
274, DIIVEL SOUMCES .eunieteettt et ettt et e ettt et e ettt e e et e e e h e e et e e et e et et et bt e e eb e e et e e et e eeanaeeees 219
ST B (A= G (=0 = = 1 o o 219
27.6. OPENING TEVICES .uiiiiiiiiiii e e e et e e e e e e e e e e e e et e et e an e e e e e e eaeenns 220
27 7. SArtiNg the R A S et e e r e 221
27.8. MalboX COMMUNICELION iiei it et e e e e e eaens 222
27.9. API TEFEIBINCE .ottt et 223

BCC-UM
Jul 2023, Version 2.2.4

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
71

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

10. Driver registration

Devicedriversinthislibrary can operate on any number of peripherals (cores) of aspecific type. Before operation
starts, the drivers must have knowledge of the available periphera devices. This knowledge is transferred at run-
time in a process named driver registration.

Driversin thislibrary rely on static memory allocation and will never call mal | oc() and related functions. This
means that memory required by the drivers need to be all ocated by the user and communicated to the drivers. This
isalso performed in the driver registration step.

Two main methods are available for registering a peripheral to a device driver:
¢ Automatic
e Manua

In therest of this chapter, the APBUART driver will be used as an example on peripheral registration. The same
procedures is used for the other drivers.

10.1. Automatic registration

Automatic registration is straight forward and covers many use cases. To use this method with the APBUART
driver, al the user hasto do isto call the functionapbuart _autoinit():

#i ncl ude <drv/apbuart.h>

int main(void)
{

struct apbuart_priv *dev;

apbuart _autoinit();
dev = apbuart_open(0);
[-..]
}
The user should be aware of the following behavior of automatic registration:
» Device private datais allocated with mal | oc() .
¢ AMBA Plug& Play bus scanning is performed.
In case the above behavior is not compatible with the target application, then the method described in Section 10.2
can be used instead.

10.2. Manual registration

Manual registration does not require dynamic memory allocation or AMBA Plug& Play bus scanning. It can be
useful for resource constrained systems.

Registration of a peripheral can be performed with the function
int apbuart_register(struct apbuart_devcfg *devcfg);

which takes a device configuration record as its parameter. For example:
#i ncl ude <drv/apbuart.h>

struct apbuart_devcfg MYDEVCFQ = {
.regs ={
. addr
.interrupt
I
b

int main(void) {
struct apbuart_priv *dev;

0x80000100,
2,

apbuart _regi st er (&WDEVCFQ)) ;
dev = apbuart_open(0);
[...1]

}

It is also possible to register multiple peripherals at once using the function

int apbuart_init(struct apbuart_devcfg *devcfgs[]);

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 72

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
which takesa NULL terminated array as parameter:
#i ncl ude <drv/apbuart.h>
struct apbuart_devcfg MYDEVCFF] = {

{ .regs = { .addr = 0x80000100, .interrupt =2, }, },
{ .regs = { .addr = 0x80000200, .interrupt =3, }, },

struct apbuart_devcfg *MYDEVCFGS[] = {
&WDEVCF(0] ,
&WDEVCF(1],
NULL,

b

int main(void) {
struct apbuart_priv *dev;

apbuart _i ni t (MYDEVCFGS) ;
dev = apbuart_open(1);

[...1]
}

In addition to specifying register base addresses and interrupt numbers, the above examples also alocate (static)
device private data. For more details, see the definition of the different st ruct [dri ver] _devcf g types.

10.3. System specific device registration tables
Device configuration tables have been prepared for the following systems:

Table 10.1. Device registration tables for manual registration

System Header files
GR716 gr716/
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 73

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

11. GRSPW Packet driver

11.1. Introduction
This section describes the GRSPW packet driver for BCC.

It is an advantage to understand the SpaceWire bus/protocols, GRSPW hardware and software driver design when
developing using the user interface in Section 11.3 and Section 11.4. The Section 11.2.1 describes the overall
software design of the driver.

Thedriver useslinked lists of packet buffersto receive and transmit SpaceWire packets. The packet driver imple-
ments an APl which allows efficient custom data buffer handling providing zero-copy ability and multiple DMA
channel support. The link control handling has been separated from the DMA handling.

11.1.1. Hardware Support

The GRSPW cores user interface are documented in the GRIP Core User's manua. Below is alist of the major
hardware features it supports:
* GRSPW, GRSPW2 and GRSPW2_DMA (router AMBA port)
Multiple DMA channels
 Link Control
Port Control
* RMAP Control

11.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the BCC source tree
src/libdrv/src/.

Table 11.1. Source Location

Filename Description
i ncl ude/ drv/ grspw pkt.h GRSPW user interface definition
src/ grspw *.c GRSPW driver implementation

11.1.3. Driver registration
This driver uses the driver registration mechanism described in Chapter 10.

Table 11.2. Driver registration functions

Registration method Function

Automatic registration grspw_aut oi nit()
Register one device grspw_register()
Register many devices grspw_init()

11.1.4. Examples
Examples are availableinthesr c/ | i bdr v/ exanpl es/ directory in the BCC distribution.
11.1.5. Known driver limitations

The known limitations in the GRSPW Packet driver exists listed below:

 The statistics counters are not atomic, clearing at the same the interrupt handler is called could cause invalid
statistics, one must disable interrupt when reading/clearing.

11.2. Software design overview

11.2.1. Overview

The driver API has been split up in two major parts listed below:

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 74

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

* Deviceinterface, see Section 11.3.
« DMA channel interface, see Section 11.4.

GRSPW device parametersthat affects the GRSPW core and all DMA channels are accessed over the device API
whereas DMA specific settings and buffer handling are accessed over the per DMA channel API. A GRSPW?2
device may implement up to four DMA channels.

In order to access the driver thefirst thing is to open a GRSPW device using the device interface.

For controlling the device one must open a GRSPW deviceusing' i d = grspw_open(dev_i ndex)' and
call appropriate device control functions. Device operations naturally affectsall DMA channels, for examplewhen
the link is disabled all DMA activity pause. However there is no connection software wise between the device
functions and DMA function, except from that the gr spw_cl ose requires that al of its DMA channels have
been closed. Closing adevice failsif DMA channels are still open.

Packets are transferred using DMA channels. To open a DMA channel one cals 'dnma_id =
grspw_dna_open(id, dnmachan_index)' and use the appropriate transmission function with the
dma_i d to identify which DMA channel used.

11.2.2. Initialization

During early initialization when the operating system boots the driver performs some basic GRSPW device and
software initialization. The following steps are performed or not performed:

* GRSPW device and DMA channels I/O registers are initialized to a state where most are zero.

* DMA isstopped on all channels

» Link state and settings are not changed (RMAP may be active).

¢ RMAP settings untouched (RMAP may be active).

* Port select untouched (RMAP may be active).

e Time Codes are disabled and TC register cleared.

« IRQ generation disabled.

» Status Register cleared.

* Node address/ DMA channels node address is untouched (RMAP may be active).

» Hardware capabilities are read.

* Deviceindex determined.

11.2.3. Link control

The GRSPW link interface handles the communication on the SpaceWire network. It consists of a transmitter,
receiver, a FSM and FIFO interfaces. The current link state, status indicating past failures, parameters that affect
the link interface such as transmitter frequency for exampleis controlled using the GRSPW register interface.
The SpaceWire link is controlled using the software device interface. The driver initialization sequence during
boot does not affect the link parameters or state. The link is controlled separately from the DMA channels, even
though the link goes out from run-mode this does not affect the DMA interface. The DMA activity of all channels
are of course paused.

Function names prefix: gr spw_l i nk_*() .

11.2.4. Time Code support

The GRSPW supports sending and receiving SpaceWire Time Codes. An interrupt can optionally be generated on
Time Code reception and the last Time Code can be read out from a GRSPW register.

Function names prefix: gr spw_tc_*()
11.2.5. RMAP support

The GRSPW device has optional support for an RMAP target implemented in hardware. The target interface is
abletointerpret RMAP protocol (pr ot i d=1) requests, take the necessary actions on the AMBA bus and generate

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 75

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

a RMAP response without the software's knowledge or interaction. The RMAP target can be disabled in order
to implement the RMAP protocol in software instead using the DMA operations. The RMAP CRC agorithm
optionally present in hardware can aso be used for checksumming the data payload.

The device interface is used to get the RMAP features supported by the hardware and configuring the below
RMAP parameters:

e Probeif RMAP and RMAP CRC is supported by hardware

* RMAP enable/disable

e SpaceWire DESTKEY of RMAP packets

The SpaceWire node address, which also affects the RMAP target, is controlled from the address configuration
routines, see Section 11.2.7.

Function names prefix: gr spw_rnmap_*()
11.2.6. Port support

The GRSPW device has optional support for two ports (two connectors), where only one port can be active at a
time. The active SpaceWire port is either forced by the user or auto selected by the hardware depending on the
link state of the SpaceWire ports at a certain condition.

The device interface is used to get information about the GRSPW hardware port support, current set up and to
control how the active port is selected.

Function names prefix: gr spw_port _*()
11.2.7. SpaceWire node address configuration

The GRSPW core supports assigning a SpaceWire node address or a range of addresses. The address affects the
received SpaceWire Packets, both to the RMAP target and to the DMA receiver. If areceived packet does not
match the node addressit isdropped and the GRSPW statusindicatesthat one or more packetswith invalid address
was received.

The GRSPW2 and GRSPW2_DMA cores that implements multiple DMA channels use the node address as a
way to determine which DMA channel areceived packet shall appear at. A unique node address or range of node
addresses per DMA channel must be configured in this case.

It is also possible to enable promiscuous mode to enable al node addresses to be accepted into the first DMA
channel, this option does not affect the RMAP target node address decoding.

The GRSPW SpaceWire node address configuration is controlled using the device interface. A specific DMA
channel's node address is thus affected by the "global" device API and not controllable using the DMA channel
interface.

If supported by hardware the node address can be removed before DMA writes the packet to memory. Thisisa
configuration option per DMA channel using the DMA channel API.

Function names prefix: gr spw_addr _*()

11.2.8. User DMA buffer handling

Thedriver is designed with zero-copy in mind. The user isresponsible for setting up data buffersonitsown . The
driver useslinked lists of packet buffersasinput and output from/to the user. It makesit possibleto handle multiple

packets on asingle driver entry, which typically has a positive impact when transmitting small sized packets.

The API supports header and databuffersfor every packet, and other packet specific transmission parameters such
as generate RMAP CRC and reception indicators such asif packet was truncated.

Since the driver never reads or writes to the header or data buffers the driver does not affect the CPU cache of the
DMA buffers, it is the user's responsibility to handle potential cache effects.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 76

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Note that the UT699 does not have D-cache snooping, this means that when reading received buffers D-cache
should either beinvalidated or the load instructions should force cache miss when accessing DMA buffers (LEON
LDA instruction) .

Function names prefix: gr spw_dnma_* ()
11.2.8.1. Buffer List help routines

The GRSPW packet driver internally uses linked lists routines. The linked list operations are found in the header
file and can be used by the user as well. The user application typically defines its own packet structures having
the same layout as struct grspw_pkt in the top and adding custom fields for the application buffer handling as
needed. For small implementations however the pkt _i d field may be enough to implement application buffer
handling. Thepkt _i d fieldisnever accessed by thedriver, instead isan optional application datastorageintended
for identifying a specific packet, which packet pool the packet buffer belongs to, or a higher level protocoal id
information for example.

Function names prefix: gr spw_l i st _*()
11.2.9. Driver DMA buffer handling

The driver represents packets with the struct grspw_pkt packet structure, see Table 11.32. They are arranged in
linked lists that are called queues by the driver. The order of the linked lists are always maintained to ensure that
the packet transmission order is represented correctly.

next = & pl —» next = & p2
count = 3 flags flags
hlen hlen
hez’?ld_: &po dlen dlen next = NULL
tail = &p2 data data flags
hdr hdr hlen
dien
data
hdr

Figure11.1. Queue example - linked list of three grspw_pkt packets
11.2.9.1. DMA Queues

The driver uses one queue per DMA channel transfer direction, thus two queues per DMA channel. The number
of packets within a queue is maintained to optimize moving packets internally between queues and to the user
which a so needs this information. The different queues are listed below.

¢ RX SCHED queue - packets that have been assigned a RX DMA descriptor.
e TX SCHED queue - packets that have been assigned a TX DMA descriptor.

Packet in the SCHED queues always are assigned to a DMA descriptor waiting for hardware to perform RX or
TX DMA operations.

The DMA descriptor table has a size limitation imposed by hardware. 64 TX or 128 RX descriptors can be defined
for one hardware descriptor table in memory. Naturally this also limits the number of packets that the SCHED
gueues may contain at any single point in time. It is up to the user to control the input and output to them by
gueueing and dequeueing from and to private queues.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 77

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The current number of packets in respective queue can be read by doing function calls using the DMA API, see
Section 11.4.7. The user can for example use thisto determine to wait or continue with packet processing.

11.2.9.2. DMA Queue operations

The user can control how the RX SCHED and TX SCHED queues are populated, by providing and removing
packet buffers. The user can control how and when packets are moved from RX SCHED and TX SCHED queues
into user provided queues by manually trigger the move by calling reception and transmission routines as described
in Section 11.4.6 and Section 11.4.5.

For RX, the packets aways flow in one direction from USER RX READY -> RX SCHED -> USER RX RECV.
Likewise the TX packets flow USER TX SEND -> TX SCHED -> USER TX SENT. The procedures triggering
gueue packet moves are listed below and in Figure 11.2 and Figure 11.3. The interface of theses procedures are
described in the DMA channel API.

¢ USER->RX SCHED —gr spw_dma_r x_pr epar e, Section 11.4.6.

e RX SCHED ->USER —gr spw_dnma_r x_recv, Section 11.4.6.

e USER->TX SCHED queue—gr spw_dna_t x_send, Section 11.4.5.

e TX SCHED ->USER—gr spw_dma_t x_r ecl ai m Section 11.4.5.

"RX PREPARE" RX SCHED "RX RECV"

. Queue .
User input empty —» —» User recelve
packet buffers packet buffers

&p7
&p8
&p9
Figure 11.2. RX gueue packet flow and operations
"TX SEND" TXQSuCeLTeED "TX RECLAIM"
User input — —» User retake
packet buffers &p7 packet buffers
&p8
&p9

Figure 11.3. TX gueue packet flow and operations

Packets which the user has provided to the driver shall be considered owned by the driver until the user takes the
packets back again. In particular, the struct grspw_pkt fields should not be accessed by the user while the packet
buffers are assigned to the driver.

11.2.10. Polling mode and interrupts

All user DMA operations are non-blocking and the user is thus responsible for processing the DMA descriptor
tables at auser defined interval by calling reception and transmit routines of the driver. DMA interrupt generation
iscontrolled individually per packet. It is configured in the packet data structure.

The driver does not contain an interrupt service routine. The user can install an I SR by using the operating system.

11.2.11. Starting and stopping DMA

The driver has been designed to make it clear which functionality belongs to the device and DMA channel APIs.
The DMA API is affected by started and stopped mode, where in stopped mode means that DMA is not possible
and used to configure the DMA part of the driver. During started mode a DMA channel can accept incoming and
send packets. Each DMA channel controls its own state. Parts of the DMA API isnot available in during stopped
mode and some during stopped mode to simplify the design. The device API is not affected by this.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 78

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Typically the DMA configuration is set and user buffersareinitialized before DMA is started. The user can control
the link interface separately from the DMA channel before and during DMA starts.

When the DMA channel is stopped by calling gr spw_dma_st op() thedriver will:

e Stop DMA transfers and DMA interrupts.
» Stop accepting new packetsfor transmission and reception. However the DMA functionswill till be open for
the user to retrieve sent and unsent TX packet buffers and to retrieve received and unused RX packet buffers.

The DMA closeroutines requiresthat the DMA channel is stopped. Similarly, the device close routine makes sure
that all DMA channels are closed to be successful. Thisisto make sure that all user tasks has return and hardware
isinagood state. It isthe user's responsibility to stop the DMA channel before closing.

DMA operational function names: gr spw_dma_{start, stop} ()
11.3. Device Interface

This section covers how the driver can be interfaced to an application to control the GRSPW hardware on device
level, such aslink state and node addresses.

11.3.1. Opening and closing device

A GRSPW device must first be opened before any operations can be performed using the driver. The number of
devices registered to the driver can be retrieved using gr spw_dev_count . A particular device can be opened
using gr spw_open and closed gr spw_cl ose. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is
marked opened by the driver. This procedureis thread-safe by protecting from other threads by using the GRSPW
driver's semaphore lock. The semaphore is used by al GRSPW devices on device opening, closing and DMA
channel opening and closing.

During opening of a GRSPW device the following steps are taken:
* GRSPW device I/O registers areinitialized to a state where most are zero.
* Descriptor tables memory for all DMA channels are allocated from the heap or from a user assigned address
and cleared. The descriptor table length is always the maximum 0x400 Bytes for RX and TX.
* Internal data structures are initialized.
e Thedeviceis marked opened to protect the caller from other users of the same device.

The example below prints the number of GRSPW devices to standard output. It then opens, prints the current link
settings and closes the first GRSPW device present in the system.

int print_spw_|ink_properties(void)
{

voi d *devi ce;

int count;

uint32_t linkcfg, clkdiv;

count = grspw dev_count();
printf ("%l GRSPW devices present\n", count);

device = grspw_open(0);
if (!device)
return -1; /* Failure */

i nkcfg = grspw_get _| i nkcfg(device);
if (linkcfg & LI NKOPTS_AUTCSTART) {
printf("GRSPW: Link is in auto-start after start-up\n");

cl kdiv = grspw_get_cl kdi v(device);
printf("GRSPW: C ock divisor reset value is %\ n", clkdiv);

grspw_cl ose(device);

return 0; /* success */

}

Table 11.3. gr spw_dev_count function declaration

Proto |int grspw _dev_count (voi d)
About |Retrieve number of GRSPW devices registered to the driver.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 79

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Return |int. Number of GRSPW devices registered to driver, zero if none.

Notes | The number of GRSPW devices registered to the driver may or may not be equal to the number of de-
vicesin the system

Table 11.4. gr spw_open function declaration

Proto |void *grspw open(int dev_no)
About |Open a GRSPW device

The GRSPW deviceisidentified by index. Index value (dev_no) must be equal to or greater than ze-
ro, and smaller than value returned by gr spw_dev_count . The returned value is used asinput ar-
gument to all functions operating on the device. It is not possible to open an already opened device in-
dex.

Param |dev_no [IN] Integer
Device identification number.

Return |Pointer. Status and driver'sinternal device identification.

NULL Failed to open device. Failsif device is already open, if dev_no isout of range, or if
driver failed to install its ISR.

Pointer GRSPW device handle to use as input parameter to all device API functions for the
opened device.

Table 11.5. gr spw_cl ose function declaration

Proto |int grspw cl ose(void *d)
About |Close a GRSPW device

All DMA channels are al so stopped and closed automatically, similar to calling gr spw_dma_st op
and gr spw_dna_cl ose for al channels.

Param |d [IN] pointer
Device handle returned by gr spw_open.

Return |int.
Value Description
DRV_OK |Successfully closed device.
others Device closed, but failed to unregister interrupt handler.

11.3.2. Hardware capabilities

Thefeaturesand capabilities present in hardware might not be symmetricin asystemwith several GRSPW devices.
For example the two first GRSPW devices on the GR712RC implements RM AP whereas the others does not. The
driver can read out the hardware capabilities and present it to the user. The set of functionality are determined
at design time. In some system where two or more systems are connected together it is likely to have different
capabilities.

The capabilities are read out from the GRSPW /O registers and written to the user in an easier accessible way.
See below function declarations for details.

Depending on device capabilities, parts of the driver APl may be inactivated due to missing hardware support.
See respective section for details.

Thefunctiongr spw_r map_support and gr spw_port _count retrieves asubset of the hardware capabili-
ties. They are described in respective section.

Table 11.6. gr spw_hw_support function declaration

Proto |void grspw_hw support(void *d, struct grspw _hw sup *hw)
About |Get GRSPW hardware capabilities

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 80

https://www.frontgrade.com/gaisler

FRONTGRADE
Write hardware capabilities of GRSPW device to user parameter hw.
Param |d [IN] pointer
Device handle returned by gr spw_open.
Param |hw[OUT] pointer
Address to where the driver will write the hardware capabilities. Pointer must to memory and be valid.

Return |None.

Thegrspw_hw_sup datastructureis described by the declaration and table below. It isused to describethe GRSPW
hardware capabilities.

/* Hardware support in GRSPWcore */
struct grspw_hw sup {

int8_t rmap; /* 1f RVAP in HWis avail able */

int8_t rmap_crc; /* 1f RVAP CRC is avail able */

int8_t rx_unalign; /* RX unaligned (byte boundary) access allowed*/
int8_t nports; /* Nunber of Ports (1 or 2) */

int8_t ndma_chans; /* Nunber of DVA Channels (1..4) */

int hw_ver si on; /* GRSPW Har dwar e Version */

int8_t irgq; /* SpWDistributed Interrupt available if 1 */

b

Table 11.7. grspw_hw_sup data structure declaration

rmap 0 RMAP target functionality is not implemented in hardware.
1 RMAP target functionality isimplemented in hardware.
rmap_crc Non-zero if RMAP CRC isavailablein hardware.

rx_unalign Non-zero if hardware can perform RX unalibned (byte boundary) DMA accesses.

nports Number of SpaceWire portsin hardware. Values: 1 or 2.
ndma _chans |Number of DMA channelsin hardware. Values: 1, 2, 3 or 4.

hw_version |57 16 |The 12-bitsindicates GRLIB AMBA Plug & Play device ID of APB device. Indicates
if GRSPW, GRSPW2 or GRSPW2_DMA..

4.0 The 5 LSB bitsindicates GRLIB AMBA Plug & Play device version of APB device.
Indicates subversion of GRSPW or GRSPW?2.

irq Non-zero if SpaceWire distributed interrupt functionality isimplemented in hardware.

11.3.3. Link Control

The SpaceWirelink is controlled and configured using the device API functions described below. The link control
functionality is described in Section 11.2.3.

In system where the GRSPW controller is connected directly to a GRSPW SpaceWire router, the link interface
is configured in the corresponding router driver.

Table 11.8. gr spw_get _| i nkcf g function declaration

Proto |uint32_t grspw get linkcfg(void *d)
About |Get link configuration

The function returns the link configuration, which can be masked with the LI NKOPTS_* defines.
Param |d [IN] pointer
Device handle returned by gr spw_open.

Return |uint32_t. Link configuration read from 1/O registers

Bits Description
0 Link isenabled. Mask: LI NKOPTS_ENABLE/LI NKOPTS_DI SABLE
1 Link is started. Mask: LI NKOPTS_START
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 81

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Link isin autostart mode. Mask: L1 NKOPTS_AUTOSTART
Interrupt generation on link error isenabled. Mask: LI NKOPTS_ERRI RQ
Table11.9. gr spw_set _| i nkcf g function declaration
Proto |int grspw set linkcfg(void *d, uint32_t cfg)
About |Set link configuration
The function sets the link configuration using the with the LI NKOPTS_* defines.
Param |d [IN] pointer
Device handle returned by gr spw_open.
Param |cf g [IN] uint32_t
Link configuration to set from /O registers
Bits Description
0 Link enable. Mask: LI NKOPTS_ENABLE/LI NKOPTS_DI SABLE
1 Link started. Mask: LI NKOPTS_START
2 Link in autostart mode. Mask: LI NKOPTS_ AUTOSTART
9 Enable interrupt generation on link error. Mask: LI NKOPTS_ERRI RQ
Return |int. The function always returns DRV_OK.
Table 11.10. gr spw_get _cl kdi v function declaration
Proto |uint32_t grspw get cl kdiv(void *d)
About |Get clock divisor
The function reads and returns the clock divisor register, masked with GRSPW CLKDI V_MASK.
Start clock and run clock can be masked individually by using GRSPW CLKDI V_START and
GRSPW _CLKDI V_RUN. The referred defines are available in the filei ncl ude/ r egs/ gr -
Spwregs. h.
Param |d [IN] pointer
Device handle returned by gr spw_open.
Return |uint32_t. Clock divisor read from 1/O registers
Bits Description
15..8 |Clock divisor used during startup
7.0 Clock divisor used in RUN state
Table11.11. gr spw_set _cl kdi v function declaration
Proto |int grspw set clkdiv(void *d, uint32_t cfg)
About | Set clock divisor
The function sets the clock divisor register with value cf g masked with GRSPW_CLKDI V_MASK in
i ncl ude/ regs/ gr spw-regs. h.
Param |d [IN] pointer
Device handle returned by gr spw_open.
Param |cl kdi v [IN] uint32_t
Clock devisor value to write to 1/0 registers.
Bits Description
15..8 |Clock divisor used during startup
7.0 Clock divisor used in RUN state
Return |int. The function always returns DRV_OK.
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 82

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table11.12. gr spw_I| i nk_st at e function declaration

Proto |spw_ link _state t grspw.|ink _state(void *d)
About |Get current SpaceWire link state.

Param |d [IN] pointer

Device identifier returned by gr spw_open.

Return |enum spw_link_state t. SpaceWire link state according to SpaceWire standard FSM state ma-
chine numbering. The possible return values are listed below. The values are defined by enum
spw_| i nk_stat e_t and shall be prefixed with SPW LS .

Value Description.

ERRRST Error reset.

ERRWAIT Error Wait state.

READY Error Wait state.

CONNECTING Connecting state.

STARTED Stated state.

RUN Run state - link and DMA isfully operational.

Table 11.13. gr spw_get _st at us function declaration

Proto |uint32_t grspw get status(void *d)
About |Get status register value

Param |d [IN] pointer

Device handle returned by gr spw_open.

Return |uint32_t.

Current value of the GRSPW Status Register.

Register definitions for the GRSPW Status Register are availableinthefilei ncl ude/ r egs/ gr -
spw-r egs. h. Thereevant defines are prefixed with GRSPW STS .

Table 11.14. gr spw_cl ear _st at us function declaration

Proto |void grspw clear_status(void *d, uint32_t status)
About |Clear bitsin the status register

Param |d [IN] pointer

Device handle returned by gr spw_open.

Param |st at us [IN] uint32_t

Mask of bitsto clear in the GRSPW Status Register.

Register definitions for the GRSPW Status Register are availablein thefilei ncl ude/ r egs/ gr -
spwr egs. h. Therelevant defines are prefixed with GRSPW STS .

Return |None.

11.3.4. Node address configuration

This part for the device API controls the node address configuration of the RMAP target and DMA channels. The
node address configuration functionality isdescribed in Section 11.2.7. The data structures and functionsinvolved
in controlling the node address configuration are listed below.

struct grspw_addr_config {

/* lIgnore address field and put all received packets to first
* DMA channel .
*/

int8_t prom scuous;

/* Default Node Address and Mask */

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 83

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

uint8_t def_addr;
uint8_t def_mask;
/* DVA Channel custom Node Address and Mask */
struct {
int8_t node_en; /* Enabl e Separate Addr */
uint8_t node_addr; /* Node address */
uint8_t node_mask; /* Node address mask */
} dnme_nacfg[4];
}

Table 11.15. grspw_addr_config data structure declaration

promiscu- |Enable (1) or disable (0) promiscous mode. The GRSPW will ignore the address field and put all
ous received packetsto first DMA channel. See hardware manual for. Thisfield is also used to by the
driver indicate if the settings should be written and read, or only read. See function description.

def_addr GRSPW default node address.
def mask |GRSPW default node address mask.

dma_nacfg |DMA channel node address array configuration, see below field description. DMA channel N is
described by dma_nacf g[N] .

Field Description
node_en Enable (1) or disable (1) separate node address for DMA channel N (determined by
array index).

node_addr |Node addressfor DMA channel N (determined by array index).
node_mask |Node address mask for DMA channel N (determined by array index).

Table 11.16. gr spw_addr _ct r| function declaration

Proto |void grspw_ addr_ctrl(void *d, const struct grspw addr_config *cfqQ)
About | Set node address configuration

The GRSPW deviceis either configured to have one single node address or arange of address-

es by masking. The cf g input memory layout is described by the grspw_addr_config data struc-
turein Table 11.15. When using multiple DMA channels one must assign each DMA channel a
unigue node address or a unique range by masking. Each DMA channel is represented by the input
dma_nacfg[N .

Param |d [IN] pointer
Device handle returned by grspw_open.

Param |cf g [IN] pointer
Address configuration to set.

Return |None.

11.3.5. Time-control codes

SpaceWire Time Code handling is controlled and configured using the device API functions described below. The
Time Code functionality is described in Section 11.2.4.

Table 11.17. gr spw_get _t ccf g function declaration

Proto |uint32_t grspw get tccfg(void *d)

About | Get time-code configuration

The function reads and returns the time-code configration from GRSPW control register.
Param |d [IN] pointer
Device handle returned by gr spw_open.

Return |uint32_t. Time-code configuration read from 1/O registers. The return value can be evaluated against
the following masks:

Mask Description

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 84

https://www.frontgrade.com/gaisler

rRONTGRADE
Gaisler
TCOPTS EN_RX Enable time-code receptions
TCOPTS EN_TX Enable time-code transmissions
TCOPTS EN_RXIRQ |Generateinterrupt when avalid time-code is received.

Table 11.18. gr spw_set _t ccf g function declaration

Proto |void grspw set_tccfg(void *d, uint32_t cfg)

About | Set time-code configuration

The function sets the time-code configuration in GRSPW control register.

Param |d [IN] pointer

Device handle returned by gr spw_open.

Param |cf g [IN] uint32_t

Time-code configuration to writein /O registers. The following masks can be used at configuration:

Mask Description

TCOPTS EN_RX Enable time-code receptions

TCOPTS EN_TX Enable time-code transmissions

TCOPTS EN_RXIRQ |Generateinterrupt when avalid time-code is received.

Return |None.

Table 11.19. gr spw_get _t c function declaration

Proto |uint32_t grspw get tc(void *d)

About | Get time register value

The function reads and returns the GRSPW time register value.
Param |d [IN] pointer
Device handle returned by gr spw_open.

Return |uint32_t. Time register read from 1/O registers. The return value can be evaluated against the follow-

ing masks:

Mask Description

TCTRL_MASK Time control flags of time register
TIMECNT_MASK Time counter of time register

11.3.6. Port Control

The SpaceWire port selection configuration, hardware support and current hardware status can be accessed using
thedevice API functions described below. The SpaceWire port support functionality isdescribed in Section 11.2.3.

In cases where only one SpaceWire port isimplemented this part of the APl can safely be ignored. The functions
still deliver consistent information and error code failures when forcing Port1, however provides no real function-
ality.

Table 11.20. gr spw_port _ctr| function declaration

Proto |int grspw port ctrl(void *d, int *port)

About |Always read and optionally set port control settings of GRSPW device. The configuration determines
how the hardware selects which SpaceWire port that is used. Thisis an optional feature in hardware to
support one or two SpaceWire ports. An error isreturned if operation not supported by hardware.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.
Param |port [IO] pointer to bit-mask

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 85

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The port configuration isfirst written if por t does not point to -1. The port configuration is always
read from the 1/O registers and stored in the por t address.

Vaue |Description

-1 The current port configuration is read and stored into the por t address.
0 Force to use PortO.
1 Force to use Port1.

>1 Hardware auto select between Port0 or Port1.

Return |Value. Description

0 Request successful.

-1 Request failed. Port1 is not implemented in hardware.

Table 11.21. gr spw_port _count function declaration

Proto |int grspw_port_count(void *d)

About | Reads and returns number of ports that hardware supports.
Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Return |int. Number of portsimplemented in hardware.
Value |Description

1 One SpaceWire port isimplemented in hardware. In thiscasegr spw_port _ctr!| function
has no effect and gr spw_port _act i ve always returnsO.

2 Two SpaceWire ports are implemented in hardware.

Table 11.22. gr spw_por t _act i ve function declaration

Proto |int grspw port_active(void *d)

About |Reads and returns the currently actively used SpaceWire port.
Param |d [IN] pointer

Deviceidentifier. Returned from gr spw_open.

Return |int. Currently active SpaceWire port
Value |Description

0 SpaceWire portO is active.

1 SpaceWire portl is active.

11.3.7. RMAP Control

The device API described below is used to configure the hardware supported RMAP target. The RMAP support
isdescribed in Section 11.2.5.

Availability of RMAP support can be determined by using the function gr spw_hw_support.

When RMAP CRC isimplemented in hardware it can be used to generate and append a CRC on a per packet basis.
It is controlled by the DMA packet flags. Header and data CRC can be generated individually. See Table 11.32
for more information.

Table11.23. gr spw_r map_set _ct r| function declaration

Proto |int grspw rmap_set _ctrl(void *d, uint32_t options)
About |Set RMAP configuration

Param |d [IN] pointer

Device handle returned by gr spw_open.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 86

https://www.frontgrade.com/gaisler

FRONTGRADE
Param |opti ons [IN] uint32_t

RMAP control optionsto set in I/O registers. The following bit masks, prefixed with RMAPOPTS
shall be used.

Bit Description
EN_RMAP |Enable (1) or Disable (0) RMAP target handling in hardware.

EN_BUF Enable (0) or Disable (1) RMAP buffer. Disabling ensures that all RMAP requests are
processed in the order they arrive.

Return |int. The function always returns DRV_OK.

Table 11.24. gr spw_r map_set _dest key function declaration

Proto |int grspw rmap_set destkey(void *d, uint32 t destkey)
About |Set RMAP destination key

Param |d [IN] pointer

Device handle returned by gr spw_open.

Param |dest key [IN] uint32_t

Destination key to set. The value shall be AND:ed with the define GRSPW DK _DESTKEY available
inthefilei ncl ude/ r egs/ gr spw-r egs. h.

Return |int. The function always returns DRV_OK.

11.3.8. Interrupt handling

No interrupt service routine isinstalled by the GRSPW driver. The user can install and uninstall an ISR by using
the Operating System Abstraction Layer functionsosal _i sr_regi st er andosal _i sr_unregi ster.At
least one GRSPW interrupt source must be enabled in the driver for interrupts to be generated. Possible interrupt
sources are time-code tick-out, link-error, and DMA interrupts.

The functions gr spw_dma_t x_count and gr spw_dma_r x_count can be used from interrupt context to
determine how many TX/RX packets are (at least) available to the user. gr spw_get _st at us can be used to
determine whether a new time count value (Tick Out) is available. Section 11.6 lists the API functions allowed
to be called from ISR context.

11.4. DMA interface

This section covers how the driver can be interfaced to an application to send and transmit SpaceWire packets
using the GRSPW hardware.

GRSPW2 and GRSPW2_DMA devices supports more than one DMA channel. The device channel zero isalways
present.

11.4.1. Opening and closing DMA channels

Thefirst step before any SpaceWire packets can be transferred isto open aDMA channel to be used for transmis-
sion. As described in the device API Section 11.3.1 the GRSPW device the DMA channel belongs to must be
opened and passed onto the DMA channel open routines.

The number of DMA channels of a GRSPW device can obtained by calling gr spw_hw_support .

An opened DMA channel can not be reopened unless the channel is closed first. When opening a channel the
channel is marked opened by the driver. This procedure is thread-safe by protecting from other threads by using
the operating system abstraction layer. Protection is used by all GRSPW devices on device opening, closing and
DMA channel opening and closing.

During opening of a GRSPW DMA channel the following steps are taken:
« DMA channel 1/O registers are initialized to a state where most are zero. The channel state is set to stopped.
« Resources used for the DMA channel implementation itself are allocated and initialized.
» The channel is marked opened to protect the caller from other users of the DMA channel.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 87

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Below is a partial example of how the first GRSPW device's first DMA channel is opened, link is started and a
packet can be received.

int spw_receive_one_packet (voi d)

{

voi d *devi ce;

void *dma0;

int count;

uint32_t |inkcfg, clkdiv;
spw_link_state_t state;
struct grspw_list Ist;

devi ce = grspw_open(0);
if (!device)
return -1; /* Failure */

/* Start Link */

linkcfg = LI NKOPTS_ENABLE | LI NKOPTS_START; /* Start Link */
grspw_set _Il i nkcf g(device, |inkcfg);

clkdiv = (9 << 8) | 9; /* Cock Dvisor factor of 10 */
grspw_set _cl kdi v(devi ce, clkdiv);

/* wait until link is in run-state */

do {

state = grspw_| i nk_state(device);
} while (state !'= SPWLS RUN);

/* Open DVA channel */

dma0 =

gr spw_dma_open(devi ce, 0);

if (!dna0) {
grspw_cl ose(devi ce);
return -2;

}

/* Initialize and activate DVA */

if (DRV.OK !'= grspw. dma_start(dma0)) {
grspw_dma_cl ose(dma0) ;
grspw_cl ose(devi ce);
return -3;

}

I* ...

*/

/* Prepare driver with RX buffers */
grspw_dma_r x_prepare(dma0, 1, &preinited_rx_unused_buf_list0);

/* Start sending a nunber of SpaceWre packets */
grspw_dme_t x_send(dma0O, 1, &preinited_tx_send_buf_list);

/* Receive at |east one packet */

do {

/* Try to receive as nmany packets as possible */

count

= grspw_dma_rx_recv(dma0, & st);

} while (0 == count);

if (-1

== count) {

printf("GRSPW. DMAO: Receive error\n");
} else {
printf("GRSPW. DMAO: Received %l packets\n", count);

}

I* ...

*/

grspw_dma_cl ose(dma0) ;
grspw_cl ose(devi ce);
return 0; /* success */

}

Table 11.25. gr spw_dma_open function declaration

Proto |void *grspw _dma_open(void *d, int chan_no)

About |OpensaDMA channel of a previously opened GRSPW device. The GRSPW deviceisidentified by
its device handle d and the DMA channel isidentified by index chan_no.
The function alocates buffers as necessary using dynamic memory allocation (mal | oc() .
The returned valueis used as input argument to al functions operating on the DMA channel.

Param |d [IN] pointer
Device handle returned by gr spw_open.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 88

https://www.frontgrade.com/gaisler

FRONTGRADE

Param [chan_no [IN] Integer

DMA channel identification number. DMA channels areindexed by 0, 1, 2 or 3. Other input values
cause NULL to be returned. The index must be equal or greater than zero.

Return |Pointer. Status and driver's internal device identification.
Value Description

NULL Indicates failure to DMA channel. Failsif DMA channel does not exists, DMA channel a-
ready has been opened or that DMA channel resource allocation or initialization failes.

Pointer | Pointer to internal driver structure. Should not be dereferenced by user. Input to all DMA
channel API functions, idenfifieswhich DMA channel.

Notes |May block until other GRSPW device operations compl ete.

Table 11.26. gr spw_dma_cl ose function declaration

Proto |int grspw dna_cl ose(void *c)

About |Closesapreviously opened DMA channel. The specificed DMA channel is stopped and closed. This
will result in the same functionality ascalling gr spw_dna_st op to stop on-going DMA transfers
and then free DMA channel resources.

Param |c [IN] pointer
DMA channel handle returned by gr spw_dma_open.
Return |int. Return code as indicated below.

Value Description
DRV_OK Success.
DRV_NOTOPEN DMA channel ¢ was not open.

11.4.1.1. Static buffer allocation

The function gr spw_dna_open uses dynamic memory for allocating DMA buffers. An alternative is to use
gr spw_dna_open_user buf , which allowsthe user to provide the buffersinstead. Note that the corresponding
function for closing the DMA channel isgr spw_dna_cl ose_user buf inthiscase.

Table 11.27. gr spw_dma_open_user buf function declaration

Proto |void *grspw _dma_open_userbuf(void *d, int chan_no, struct grspw.ring
*rx_ring, struct grspwring *tx ring, struct grspw rxbd *rx_bds,
struct grspw_txbd *tx_bds)

About |OpensaDMA channel of a previously opened GRSPW device. The GRSPW deviceisidentified by
its device handle d and the DMA channel isidentified by index chan_no.

The function requires the caller to provide buffersfor thedriver touse (r x_ri ngtx_ring
r x_bds t x_bds). These memory areas shall not be referenced by the user aslong asthe
DMA channel is opened. The areas can be reused when the channel has been closed with
grspw_dma_cl ose_user buf.

Thereturned value is used as input argument to all functions operating on the DMA channel.
Param |d [IN] pointer
Device handle returned by gr spw_open.

Param |chan_no [IN] Integer

DMA channel identification number. DMA channels are indexed by 0, 1, 2 or 3. Other input values
cause NULL to be returned. The index must be equal or greater than zero.

Param |r x_ri ng [IN] Pointer

RX buffer ring area. Size shall be GRSPW RXBD_NR * sizeof (struct grspw_ring),
aligned to 32-bit word.

Param |t x_ri ng [IN] Pointer

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 89

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

TX buffer ring area. Size shall be GRSPW TXBD_NR * si zeof (struct grspw_ring),
aligned to 32-bit word.

Param |r x_bds [IN] Pointer

RX DMA buffer descriptor table area. Must be 1 KiB, and aligned to 1 KiB address boundary.
Param |t x_bds [IN] Pointer

TX DMA buffer descriptor table area. Must be 1 KiB, and aligned to 1 KiB address boundary.
Return |Pointer. Status and driver'sinterna device identification.

Value Description

NULL Indicates failure to DMA channel. Failsif DMA channel does not exists, DMA channel a-
ready has been opened or that DMA channel resource allocation or initialization failes.

Pointer | Pointer to internal driver structure. Should not be dereferenced by user. Input to all DMA
channel API functions, idenfifieswhich DMA channel.

Notes |May block until other GRSPW device operations compl ete.

Table 11.28. gr spw_dma_cl ose_user buf function declaration

Proto |int grspw dma_cl ose_userbuf(void *c)

About |Closes apreviously opened DMA channel. The specificed DMA channel is stopped and closed. This
will result in the same functionality as calling gr spw_dma_st op to stop on-going DMA transfers
and then free DMA channel resources.

Param |c [IN] pointer
DMA channel handle returned by gr spw_dre_open_user buf .
Return |int. Return code as indicated below.

Value Description
DRV_OK Success.
DRV_NOTOPEN DMA channel ¢ was not open.

11.4.2. Starting and stopping DMA operation

The start and stop operational modes are described in Section 11.2.11. The functions described below are used
to change the operational mode of a DMA channels. A summary of which DMA API functions are affected are
listed in Table 11.29, see function description for details on limitations.

Table 11.29. functions available in the two operational modes

Function Stopped Started

gr spw_dnma_open N/A N/A

grspw_dma_cl ose Yes Yes

grspw _dma_start Yes No

gr spw_dnma_st op No Yes

grspw _dma_rx_recv Yes, with limitations, see |Yes
Section 11.4.6

grspw _dnma_r x_prepare Yes, with limitations, see |Yes
Section 11.4.6

grspw_dma_rx_fl ush Yes No

grspw_dma_t x_send Yes, with limitations, see |Yes
Section 11.4.5

grspw dnma_tx_reclaim Yes, with limitations, see |Yes
Section 11.4.5

grspw dnma_tx_flush Yes No

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 90

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Function Stopped Started
grspw_dma_config Yes No

grspw _dma_config read Yes Yes
grspw dma_stats_read Yes Yes
grspw_dma_stats_clr Yes Yes

Table 11.30. gr spw_dnma_st art function declaration

Proto |int grspw dma_start(void *c)

About |Starts DMA operational mode for the DMA channel indicated by the argument. After thisstepitis
possible to send and receive SpaceWire packets. If the DMA channel is already in started mode, no
action will be taken.

The start routine clears and initializes the following:

* DMA descriptor rings.

 DMA queues.

o Statistic counters.

* 1/O registersto match DMA configuration previously set with gr spw_dma_confi g

* Interrupt

* DMA Status

 Enablesthe receiver
Even though the receiver is enabled the user is required to prepare empty receive buffers after this
point, seegr spw_dma_r x_pr epar e. The transmitter is enabled when the user provides send
buffersthat ends up in the TX SCHED queue, seegr spw_dma_t x_send.

Param |d [IN] pointer
Device handle returned by gr spw_open.
Return |int. DRV_STARTEDIf channel was aready started, else DRV_CK.

Table 11.31. gr spw_dnma_st op function declaration

Proto |void grspw dna_stop(void *c)

About | Stops DMA operational mode for the DMA channel indicated by the argument. The transmitter will
abort ongoing transfers and the receiver disabled. Packets in the RX SCHED queue will remain in this
queue. The RXPKT_FLAG_RX packet flag is used to signal if the packet contains received data or
not. Similarly, the TXPKT_FLAG_TX packet flag marksif the packet was actually transferred or not.

Param |d [IN] pointer
Device identifier returned by gr spw_open.

Return |None.

Notes |The user may want to flush the RX/TX SCHED queues with functionsgr spw_dma_r x_f | ush and
grspw_dma_t x_f | ush after stopping to get unprocessed packets back.

11.4.3. Packet buffer description

The GRSPW packet driver describes packets for both RX and TX using acommon memory layout defined by the
data structure grspw_pkt. It is described in detail below.

There are differencesin which fields and bits are used between RX and TX operations. Thebitsusedinthef | ags
field are defined different. When sending packets the user can optionally provide two different buffers, the header
and data. The header can maximally be 256Bytes due to hardware limitations and the data supports 24-bit length
fields. For RX operations hdr and hl en are not used. Instead all datareceived is put into the data area.

On some systems, the data buffer pointer must be 32-bit word aligned for reception.

struct grspw_pkt {

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 91

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

struct grspw_pkt *next; /* Next packet in list. NULL if |ast packet */

uintptr_t pkt_id; /* User assigned ID (not touched by driver) */

voi d *dat a; /* 4-byte or byte aligned depends on HW*/

void *hdr; /* 4-byte or byte aligned depends on HW (only TX) */
uint32_t dlen; /* Length of Data Buffer */

uint16_t fl ags; /* RX/TX Options and status */

uint8_t hlen; /* Length of Header Buffer (only TX) */

b
Table 11.32. grspw_pkt data structure declaration

next | The packet structure can be part of alinked list. Thisfield is used to point out the next packet in the
list. Set to NULL if this packet isthelast in the list or asingle packet.

pkt_id |User assigned ID. Thisfield is never touched by the driver. It can be used to store a pointer or other
datato help implement the user buffer handling.

data Data Buffer Address. DMA will read from this. The address must be 4-byte or byte aligned depending
on hardware.

hdr Header Buffer Address. DMA will read hl en bytes from this. The address must be 4-byte or byte
aligned depending on hardware. Thisfield is not used by RX operation.

dien Data payload lenght. The number of bytes hardware DMA read or written from/to the address indicat-
ed by the data pointer. On RX thisis the complete packet data received.

flags |RX/TX transmission options and flags indicating resulting status. The bits described below isto be
prefixed with TXPKT_FLAG_or RXPKT_FLAG_ in order to match the TX or RX options defini-
tionas declared by the driver's header file.

Bits TX Description (prefixed TXPKT_FLAG)

NOCRC_MASK |Indicatesto driver how many bytes shuld not be part of the header CRC calcula-
tion. 0 to 15 bytes can be omitted. Use NOCRC_LENN to select a specific lenght.

IE Enable (1) or Disable (0) IRQ generation on packet transmission completed.

HCRC Enable (1) or disable (0) Header CRC generation (if CRC isavailable in hard-
ware). Header CRC will be appended (one byte at end of header).

DCRC Enable (1) or disable (0) Data CRC generation (if CRC is available in hardware).
Data CRC will be appended (one byte at end of packet).

TX Is set by the driver to indicate that the packet was transmitted. This does no signa

a successful transmission, but that transmission was attempted, the LINKERR bit
needs to be checked for error indication.

LINKERR Set if alink error was exibited during transmission of this packet.

Bits RX Description (prefixed RXPKT_FLAG)

IE Enable (1) or Disable (0) IRQ generation on packet reception completed.
TRUNK Set if packet was truncated.

DCRC Set if data CRC error detected (only valid if RMAP CRC is enabled).
HCRC Set if header CRC error detected (only valid if RMAP CRC is enabled).
EEOP Set if an End-of-Packet error occured during reception of this packet.
RX Marksif packet was recevied or not.

hlen Header length. The number of bytes hardware will transfer using DMA from the address indicated by
the hdr pointer. Thisfield is not used by RX operation.

11.4.4. Packet buffer lists

The DMA transfer operations take packet lists as input parameters. A packet list is alinked list with elements of
type struct grspw_pkt. The public driver interface header file includes functions for manipulating lists, prefixed
withgrspw |ist_*().

Thefollowing list is a summary of some of the available list manipulation functions.
e grspw_list_clr initidlizesalist.
e grspw_list_is_enpty determinesif alistisempty.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 92

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

e grspw_|l i st_append appends apacket to the end of alist.
e grspw_|ist_append_li st appends packetsfrom onelist to the end of another list.

11.4.5. Sending packets

Packets are sent by adding packets to the TX SCHED queue where they will be assigned a DMA descriptor and
scheduled for transmission. After transmission has completed the packet buffers can be retrieved to view the
transmission status and to be able to reuse the packet buffers for new transfers. During the time the packet isin
the driver it must not be accessed by the user.

Transmission of SpaceWire packets are described in Section 11.2.1.

In the below example Figure 11.4 three SpaceWire packets are scheduled for transmission. The count should
be set to three. The second packet is programmed to generate an interrupt when transmission finished, GRSPW
hardware will also generate aheader CRC using the RMAP CRC agorithm resulting in a 16 byteslong SpaceWire
packet.

pkts (input)

next = NULL
head = &p0)/ flags=0
tail = &p2 next = &pl next = &p2

4

> hlen=0
flags=0 flags= dlen=4
hlen =0 FLAG_IE| DATA2 PAYLOAD
FLAG_HCRC data = &d2 " | - | S | "
dlen=5 hlen =7 hdr = NULL
it dlen =8 DATA1PAYLOAD
hdr = NULL) R
— alblc|d]e[f[g]h
hdr = &h1 —
HEADER1 (without CRC)
DATAOPAYLOAD
albfcldfe[f]g

a|b|c|d|e

Figure 11.4. TX packet description pkt s inputtogr spw_t x_dna_send
The below tables describe the functions involved in initiating and completing transmissions.

Table 11.33. gr spw_dma_t x_send function declaration

Proto |int grspw dma_tx send(void *c, struct grspw.|ist *pkts)

About |Schedule list of packets for transmission at some point in future.

The GRSPW transmitter is enabled when packets are added to the TX SCHED queue. (US-
ER->SCHED)

The fastest solution in retrieving sent TX packets and sending new framesisto call:
1. grspw_dma tx_reclaim(opts=0)
2. grspw_dma tx_send(opts=1)

NOTE: the TXPKT_FLAG_TX flag must not be set in the packet structure.

Param |c [IN] pointer

DMA channel handle returned by gr spw_dna_open.

Param |pkt s [IN] pointer

A linked list of initialized SpaceWire packets. The grspw_list structure must be initialized so that
head pointsto thefirst packet andt ai | pointsto thelast.

The layout and content of the packet is defined by the grspw_pkt data structureis described in Ta
ble 11.32. Note that TXPKT_FLAG_TX of thef | ags field must not be set.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 93

https://www.frontgrade.com/gaisler

FRONTGRADE
Return |int. See return codes below
Vaue |Description
-1 Error: DMA channel is not in started mode.
>=0 Successfully added pktsto TX SCHED list.
Notes | Thisfunction performs no operation when the DMA channel is stopped.

Table 11.34. gr spw_dna_t x_r ecl ai mfunction declaration

Proto |int grspw dma_tx_reclaimvoid *c, struct grspw_|ist *pkts)

About |Reclaim TX packet buffers that has previously been scheduled for transmission with
grspw_dma_t x_send.

The packetsin the SCHED queue which have been transmitted are moved to the pkt s packet list.
The user pkt s list isnot cleared by the function. When the move has been completed the packet can
safely be reused again by the user. The packet structures have been updated with transmission status
to indicate transfer failures of individual packets.

Thetypical solution for retrieving sent TX packets and sending new framesisto call:
1. grspw_dma tx_reclaim()
2. grspw_dma tx_send()

NOTE: the TXPKT_FLAG_TX flag indicates if the packet was transmitted.

Param |c [IN] pointer

DMA channel handle returned by gr spw_dna_open.
Param |pkt s [OUT] pointer

Sent TX packets will be taken from the SCHED queue and added to the pkt s queue. The user queue
pkt s isnot cleared.

The layout and content of the packet is defined by the grspw_pkt data structureis described in Ta-
ble 11.32. Note that TXPKT_FLAG_TX of thef | ags field indicatesif the packet was sent of not.
In case of DMA being stopped one can use this flag to seeif the packet was transmitted or not. The
TXPKT_FLAG_LINKERR indicatesif alink error occurred during transmission of the packet, re-
gardlessthe TXPKT_FLAG_TX is set to indicate packet transmission attempt.

Return |int. See return codes below

Value |Description

-1 Error: DMA channel is not in started mode.

0 No packet reclaimed (SCHED list contains no sent packets).
>0 Number of packets successfully reclaimed to user list.

Notes |This function can operate in stopped mode. This is useful when alink goes down and the DMA activi-
ty is stopped by user or by driver automatically.

11.4.6. Receiving packets

Packets are received by adding empty/free packets to the RX SCHED queue where they will be assigned aDMA
descriptor and scheduled for reception. After a packet is received into the buffer(s) the packet buffer(s) can be
retrieved to view the reception status and to be able to reuse the packet buffers for new transfers. During the time
the packet isin the driver it must not be accessed by the user.

Reception of SpaceWire packets are described in Section 11.2.1.

In the Figure 11.5 example three SpaceWire packets are received. The count parametersis set to three by the
driver to reflect the number of packets. The first packet exhibited an early end-of-packet during reception which
also resulted in header and data CRC error. All header pointers and header lengths have been set to zero by the
user since they are no used, however the values in those fields does not affect the RX operations. The RX flag is
set to indicate that DMA transfer was performed.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 94

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

pkts (input)
head:&p0>/ > next=NULL
P flags =
tail = &p2 next = &p1 »| next = &p2 FLAG_RX
flags = flags= hlen=0
FLAG RX | FLAG_RX o=
FLAG_EEOP | hlen =0 DATA2 PAYLOAD
FLAG DCRC | data= & d2
FLAG_HCRC dlen=8 har S NULL a|blc]d
hlen=0 data=&d1 —
dlen=5 hdr = NULL DATALPAYLOAD
data=&d0 albf[cld|e[f]g]|h
hdr = NULL DATAOPAYLOAD

a|b|c|d|e

Figure 11.5. RX packet output fromgr spw_dna_r x_r ecv
The below tables describe the functions involved in initiating and completing transmissions.

Table 11.35. gr spw_dma_r x_pr epar e function declaration

Proto |int grspw dma_rx_prepare(void *c, struct grspw_ |list *pkts)

About |Add RX packet buffers for future reception.

The received packets can later be read out with gr spw_dma_r x_r ecv. The packetsin pkt s list
are put to the SCHED queue of the driver (USER->SCHED).

Thetypical solution for retreiving received RX packets and preparing new packet buffers for future
receive, isto call:

1. grspw_dma rx_recv(&recvlist)

2. grspw_dma rx_prepare(& freelist)
NOTE: the RXPKT_FLAG_RX flag must not be set in the packet structure.
Param |c [IN] pointer

DMA channel handle returned by gr spw_dna_open.

Param |pkt s [IN] pointer

A linked list of initialized SpaceWire packets. The grspw_list structure must be initialized so that
head pointsto thefirst packet andt ai | pointsto the last.

The layout and content of the packet is defined by the grspw_pkt data structure described in Ta
ble 11.32. Note that RXPKT_FLAG_RX of thef | ags field must not be set.

Return |int. See return codes below

Value |Description

-1 Error: DMA channel is not in started mode.

0 No packets added (SCHED list isfull).

>0 Number of packets successfully added to RX SCHED queue.

Notes |Thisfunction performs no operation when the DMA channel is stopped.

Table 11.36. gr spw_dma_r x_r ecv function declaration

Proto |int grspw dma_rx recv(void *c, struct grspw.|ist *pkts)

About |Get received RX packet buffers which have previously been scheduled for reception with
grspw_dma_r x_pr epar e.

The packets in the RX SCHED queue which have been received are moved to the pkt s packet list
(SCHED->USER). When the move has been compl eted the packet(s) can safely be reused again by
the user. The packet structures have been updated with reception status to indicate transfer failures of

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 95

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

individual packets and received packet length. The header pointer and length fields are not touched by
the driver, all data ends up in the data area.

NOTE: the RXPKT_FLAG_RX flag indicatesif a packet was received, thusif the datafield contains
new valid data or not.

Param |c [IN] pointer
DMA channel handle returned by gr spw_dne_open.
Param |pkt s [OUT] pointer

Received RX packets will be taken from the SCHED queue and added to the pkt s queue. The user
queue pkt s isnot cleared.

The layout and content of the packet is defined by the grspw_pkt data structure described in Ta-

ble 11.32. Note that RXPKT_FLAG_RX of thef | ags field indicates if the packet was received

or not. In case of DMA being stopped one can use this flag to see if the packet was received or not.
The TRUNK, DCRC, HCRC and EEOP flags indicates if an error occured during transmission of the
packet, regardiess the RXPKT_FLAG_RX is set to indicate packet reception attempt.

Return |int. See return codes below

Value |Description

-1 Error: DMA channel is not in started mode.

0 No packet received (SCHED list contains no received packets).
>0 Number of received packets added to user list.

Notes |Thisfunction can be called when the DMA channel isin stopped mode. Thisis useful when alink
goes down and the DMA activity is stopped by user or by driver automatically.

11.4.7. Transmission queue status

The current number of packets processed by hardware but not yet reclaimed/received by the driver can be queried
using the functions described below. These numbers give a hint on how many packets will be reclaimed by a call
togrspw_dma_t x_r ecl ai mor received by gr spw_dnma_r x_r ecv.

Table 11.37. gr spw_dna_t x_count function declaration

Proto |int grspw dma_tx_count(void *c)

About | Get number of packets transmitted by hardware but not yet reclaimed by the driver.

Thisis determined by looking at the TX descriptor pointer register. The number represents how many
of the send packets that actually have been transmitted by hardware but not reclaimed by the driver
yet.

Param |c [IN] pointer

DMA channel handle returned by gr spw_dma_open.

Return |int. The number of packets transmitted by hardware but not yet reclaimed by the driver.

Notes |Thisfunction can be called from interrupt context.

Table 11.38. gr spw_dma_r x_count function declaration

Proto |int grspw dma_rx_count(void *c)

About | Get number of packets received by hardware but not yet retrieved by the driver.

Thisis determined by looking at the RX descriptor pointer register. The number represents how many
of the prepared packets that actually have been received by hardware but not handled by the driver
yet.

Param |c [IN] pointer

DMA channel handle returned by gr spw_dma_open.

Return |int. The number of packets received by hardware but not yet retrieved by the driver.

Notes |Thisfunction can be called from interrupt context.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 96

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

11.4.8. Queue flushing

When a DMA channd is stopped after being in started state, it may contain scheduled unsent TX pack-
ets and scheduled unreceived RX packets. These packets can be given back to the user with the functions
grspw dna_tx _flushandgrspw dma_rx_fl ush.

Table 11.39. gr spw_dma_t x_f | ush function declaration

Proto |int grspw dma_tx_flush(void *c, struct grspw_|ist *pkts)
About |Flush TX packets from driver

Likegr spw_dnma_t x_r ecl ai m but also move scheduled unsent packets to user list. This func-
tion can only be called when DMA channel isin stopped mode. Return value is the sum of sent pack-
ets and unsent packets. The TXPKT _FLAG TX packet flag indicates, for each packet, if it was sent or
not.

Param |c [IN] pointer
DMA channel handle returned by gr spw_dma_open.
Param |pkt s [OUT] pointer

Thelist will be initialized to contain the SpaceWire packets moved from the SCHED queue to the
packet list. The grspw_list structure will be initialized so that head points to the first packet, t ai |
pointsto the last and the last packet (tail) next pointer isNULL.

Return | Number of packets. See return codes below

Vaue |Description
-1 Error: DMA channel isin started mode.
others | Number of sent and unsent packets added to user list.

Notes |Thisfunction can only be called in DMA channel stopped mode.

Table 11.40. gr spw_dna_r x_f | ush function declaration

Proto |int grspw dma_rx_flush(void *c, struct grspw_|list *pkts)
About |Flush RX packets from driver

Likegr spw_dma_r x_r ecv, but also move scheduled unreceived packets to user list. This function
can only be called when DMA channel isin stopped mode. Returns sum of recevied packets and unre-
ceived packets. The RXPKT _FLAG_RX packet flag indicatesif the packet was received or not.

Param |c [IN] pointer
DMA channel handle returned by gr spw_dna_open.
Param |pkt s [OUT] pointer

Thelist will be initialized to contain the SpaceWire packets moved from the SCHED queue to the
packet list. The grspw_list structure will be initialized so that head points to the first packet, t ai |
pointsto the last and the last packet (tail) next pointer isNULL.

Return |Number of packts. See return codes below

Vaue |Description
-1 Error: DMA channel isin started mode.
others | Number of received and unreceived packets added to user list.

Notes |Thisfunction can only be called in DMA channel stopped mode.

11.4.9. Statistics

The driver counts statistics at certain events. The driver's DMA channel counters can be read out using the DMA
API. Packet transmission statistics, packet transmission errors and packet queue statistics can be obtained.

struct grspw dne_stats {
/* Descriptor Statistics */

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 97

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

int tx_pkts; /* Nunber of Transmitted packets */

int tx_err_link; /* Nunber of Transmitted packets with Link Error*/
int rx_pkts; /* Nunber of Received packets */

int rx_err_trunk; /* Nunber of Received Truncated packets */

int rx_err_endpkt; /* Nunber of Received packets wi th bad ending */

h

Table 11.41. grspw_dma_stats data structure declaration

tx_pkts Number of transmitted packets with link errors.
tx_err_link Number of transmitted packets with link errors.
rx_pkts Number of received packets.

rx_err_trunk Number of received Truncated packets.
rx_err_endpkt Number of received packets with bad ending.

Table11.42. gr spw_dma_st at s_r ead function declaration

Proto |void grspw dna_stats read(void *c, struct grspw dna_stats *sts)

About | Readsthe current driver statistics collected from earlier events by aDMA channel and DMA channel
usage. The statistics are stored to the address given by the second argument. The layout and content of
the statistics are defined by the grspw_dma_stats data structure is described in Table 11.41.

Note that the snapshot is taken without lock protection, as a consequence the statistics may not be syn-
chonized with each other. This could be caused if the function is interrupted by athe GRSPW inter-
rupt or other tasks performing driver operations on the same DMA channel.

Param |c [IN] pointer
DMA channel identifier. Returned from gr spw_dma_open.

Param |st s [OUT] pointer

A snapshot of the current driver statistics are copied to this user provided buffer.

The layout and content of the statistics are defined by the grspw_dma_stats data structure is described
inTable 11.41.

Return |None.

Table11.43. gr spw_dma_st at s_cl r function declaration

Proto |void grspw dna_stats clr(void *c)

About |ResetsaDMA channel's statistic counters. The channel counters are set to zero.

Param |c [IN] pointer
DMA channel handle returned by gr spw_dna_open.

Return |None.

11.4.10. DMA channel configuration

Various aspects of DMA transfers can be configured using the functions described in this section. The configu-
ration affects:

* DMA transfer options, no-spill, strip address/PID.

* Receive max packet length.

struct grspw_dma_config {

int flags; /* DVA config flags, see DVAFLAG * options */
int rxmaxlen; /* RX Max Packet Length */

s

Table 11.44. grspw_dma_config data structure declaration

flags RX/TX DMA transmission options See below.
Bits Description (prefixed DMAFLAG)
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 98

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

NO_SPILL Enable (1) or Disable (0) packet spilling, flow control.

STRIP_ADR |Enable (1) or Disable (0) stripping node address byte from DMA write
transfers (packet reception). See hardware support to determine if present in
hardware. See hardware documenation about DMA CTRL SA hit.

STRIP_PID Enable (1) or disable (0) stripping PID byte from DMA write transfers
(packet reception).(if CRC is available in hardware). See hardware sup-
port to determine if present in hardware. See hardware documenation about
DMA CTRL SP hit.

rxmaxlen Max packet reception length. Longer packets with will be truncated see
RXPKT_FLAG_TRUNK flagin packet structure.

If the function gr spw_dna_confi g is not called after the user has opened the DMA channel with
gr spw_dnma_open, then the configuration will have default values:

o Packet spilling is enabled (NO_SPI LL=0).

« Node address byte stripping is disabled (STRI P_ADR=0).

e PID byte stripping isdisabled (STRI P_PI D=0).

« Maximum packet reception length is 4096 bytes (r xmax| en=4096).

If the DMA channel is stopped the last configuration set with gr spw_dnma_conf i g is used the next time the
channel is started with gr spw_dna_st art .

Table 11.45. gr spw_dma_conf i g function declaration

Proto |int grspw dma_config(void *c, struct grspw dma_config *cfq)

About | Set the DMA channel configuration options as described by the input arguments.

It is only possible the change the configuration on stopped DMA channels, otherwise an error codeis
returned.

The hardware registers are not written directly. The settings take effect when the DMA channel is
started calling gr spw_dnma_start.

Param |c [IN] pointer
DMA channel handle returned by gr spw_dma_open.

Param |cf g [IN] pointer

Address to where the driver will read the DMA channel configuration from. The configuration options
are described in Table 11.44.

Return |int. Return code as indicated bel ow.

Value Description

DRV_OK Success.

DRV_FAIL Failure due to invalid input arguments or DMA has already been start-
ed.

Table 11.46. gr spw_dma_conf i g_r ead function declaration

Proto |void grspw dna _config read(void *c, struct grspw dma_config *cfg)

About | Copiesthe DMA channel configuration to user defined memory area.

Param |c [IN] pointer

DMA channel handle returned by gr spw_dna_open.

Param |sts [OUT] pointer

The driver DMA channel configuration options are copied to this user provided buffer.

The layout and content of the statistics are defined by the grpsw_dma _config data structure is de-
scribed in Table 11.44.

Return |int. Return code as indicated below.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 99

https://www.frontgrade.com/gaisler

rRONTGRADE
Gaisler
Value Description
DRV_OK |Success.
DRV_FAIL |Failure due to invalid input argument.

11.4.11. DMA channel status

Status information unique to a DMA channel is exported by the drivers DMA channel status interface. It reads
and manipul ates status bits available in the GRSPW DMA control register.

The following statusinformation is available:
» Buserrors caused by the receive DMA channel (GRSPW DVA_STATUS_RA).
« Buserrors caused by the transmit DMA channel (GRSPW DMA_STATUS _TA).
A packets has been received (GRSPW DVA_STATUS_PR).
A packets has been sent (GRSPW DVA_STATUS_PS).

Table11.47. gr spw_dma_get _st at us function declaration

Proto |uint32_t grspw dma_get status(void *c)
About |Get DMA channel status

The function reads and returns status from the GRSPW DMA control register. Status bitsin the regis-
ter are not cleared. Use function gr spw_dra_cl ear _st at us to clear the status bits.

Param |c [IN] pointer
DMA channel handle returned by gr spw_dra_open.
Return |uint32_t.

Mask of DMA channel status bits read from GRSPW DMA control register.

The return value shall be evaluated against the following bit masks:
Mask Description
GRSPW_DMA_STATUS RA |RX AHB Error
GRSPW_DMA_STATUS TA |TX AHB Error
GRSPW_DMA_STATUS PR |Packet received
GRSPW_DMA_STATUS PS |Packet sent

Table 11.48. gr spw_dma_cl ear _st at us function declaration

Proto |void grspw dna _clear_status(void *c, uint32_t status)
About |Clear DMA channel status

The function clears the status bitsin GRSPW DMA control register corresponding to
the bits set in the st at us parameter. Current status can be retrieved with the function
grspw_dma_get _st at us.

Param |c [IN] pointer

DMA channel handle returned by gr spw_dna_open.

Param |st at us [IN] uint32_t

Mask of DMA channel status bitsto clear in GRSPW DMA control register.

The bit masks are the same as the masks for gr spw_dna_get st at us return value.

Return |None.

11.5. APl reference

This section lists all functions and data structures of the GRSPW driver API, and in which section(s) they are
described.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 100

https://www.frontgrade.com/gaisler

rRONTGRADE

11.5.1. Data structures

The data structures used together with the Device and/or DMA API are summarized in the table below.

Table 11.49. Data structures reference

Gaisler

Data structure name Section
struct grspw_pkt 11.4.3
struct grspw_addr_config 11.34
struct grspw_hw_sup 11.3.2
struct grspw_dma_stats 1149
struct grspw_dma_config 11.4.10

11.5.2. Device functions

The GRSPW device API. The functions listed in the table below operates on the GRSPW common registers and

driver set up. Changes here typically affectsall DMA channels and link properties .

Table 11.50. Device function reference

Prototype Section
i nt grspw_dev_count (voi d) 1131

voi d *grspw_open(int dev_no) 11.31

int grspw close(void *d) 11.31

void grspw addr_ctrl (void *d, struct grspw addr_config *cfq) 11.34,
spw_link_state_t grspw_|ink_state(void *d) 11.3.3,
uint32_t grspw_get _linkcfg(void *d) 11.3.3,
int grspw set linkcfg(void *d, uint32_t cfq) 11.3.3,
uint32_t grspw get clkdiv(void *d) 11.3.3,
int grspw set_clkdiv(void *d, uint32_t clkdiv) 11.3.3,
uint32_t grspw get status(void *d) 11.3.3,
void grspw cl ear_status(void *d, uint32_t status) 11.3.3,
uint32_t grspw get tccfg(void *d) 11.3.5,
void grspw set _tccfg(void *d, uint32_t cfg) 11.3.5,
uint32_t grspw get_tc(void *d) 11.3.5,

11.5.3. DMA functions

The GRSPW DMA channel API. The functionslisted in the table below operates on one GRSPW DMA channel

and itsdriver set up. Thisinterfaceis used to send and receive SpaceWire packets.
GRSPW2 and GRSPW2_DMA devices supports more than one DMA channel.

Table 11.51. DMA channel function reference

Prototype Section
void *grspw _dma_open(void *d, int chan_no) 1141,
1131
voi d grspw _dnma_cl ose(void *c) 11.4.1,
1131
voi d *grspw dnma_open_userbuf (void *d, int chan_no, struct 11.4.1,
grspw ring *rx_ring, struct grspwring *tx ring, struct grspw rxbd [113.1
*rx_bds, struct grspw_ txbd *tx_bds)
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 101

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Prototype Section
voi d grspw _dma_cl ose_userbuf (void *c) 1141,
1131
int grspw dna_start(void *c) 11.4.2,
voi d grspw_dma_stop(void *c) 11.4.2,
int grspw. dnma_rx_recv(void *c, struct grspw_|ist *pkts) 11.4.6,
int grspw dme_rx_prepare(void *c, struct grspw_|list *pkts) 11.4.6,
int grspw dnma_rx flush(void *c, struct grspw |ist *pkts) 11.4.8,
int grspw dnma_tx send(void *c, struct grspw.|list *pkts) 11.4.5,
int grspw dna_tx_reclainmvoid *c, struct grspw_list *pkts) 11.4.5,
int grspw dma_tx_flush(void *c, struct grspw_ |ist *pkts) 11.4.8,
void grspw dnma_stats read(void *c, struct grspw dnma_stats *sts) 11.4.9
void grspw dnma_stats _clear(void *c) 11.4.9
int grspw._dnma_config(void *c, struct grspw dma_config *cfqg) 11.4.10
int grspw. dma_config_read(void *c, struct grspw dnma_config *cfqQ) 11.4.10
uint32_ t grspw dna_get status(void *c) 11.4.11
void grspw dma_cl ear _status(void *c, uint32_t status) 11.4.11

11.6. Restrictions

To processinterrupt events, the user I SR should typically wake up atask which performsthe driver API functions
necessary. The following GRSPW Packet driver functions are allowed to be called from an ISR:

e grspw_get_status

e grspw link_state

e grspw_dnma_rx_count

e grspw_dnma_t x_count

e grspw_dev_count

e grspw_cl ear_status

e grspw get clkdiv

e grspw get |inkcfg

e grspw_get _tc

e grspw get _tccfg

e grspw _dna_get status

e grspw_dme_cl ear _status

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 102

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

12. GRCAN CAN driver

12.1. Introduction

This section describes the driver used to control the GRLIB GRCAN and GRCANFD devices for CAN DMA
operation.

12.1.1. User Interface

This section covers how the driver can beinterfaced to an application to control both the GRCAN and GRCANFD
hardware.

Controlling the driver and device is done with functions provided by the driver prefixed with gr can_. GR-
CANFD specific functions are prefixed with gr canf d_. All driver functions take a device handle returned by
gr can_open asthe first parameter. All supported commands and their data structures are defined in the CAN
driver's header filedr v/ gr can. h.

All driver functions are non-blocking.
12.1.2. Driver registration
This driver uses the driver registration mechanism described in Chapter 10.

Table 12.1. Driver registration functions

Registration method Function

Automatic registration grcan_aut oi nit()
Register one device grcan_register()
Register many devices grcan_init()

12.1.3. Examples

Examplesare availableinthesr c/ | i bdr v/ exanpl es/ directory in the BCC distribution.

12.1.4. Known driver limitations

e The DMA buffers must be CPU accessible and within the same address space. No address trandation is
performed by the driver.

12.2. Opening and closing device

A GRCAN device must first be opened before any operations can be performed using the driver. The number of
devices registered to the driver can be retrieved using gr can_dev_count . A particular device can be opened
using gr can_open and closed gr can_cl ose. The functions are described below.

An opened device can not be reopened unlessthedeviceisclosed first. When opening adevice the deviceis marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal _| dst ub
from the OSAL. Protection is used by all GRCAN devices on opening and closing.

During opening of a GRCAN device the following steps are taken:
¢ GRCAN device l/O registers areinitialized, including masking all interrupts.
e Thecoreisdisabled (to allow configuration).
* Internal data structures are initialized.
» The device is marked opened to protect the caller from other users of the same device.

The example below printsthe number of GRCAN devicesto screen then opens and closesthe first GRCAN device
present in the system.

int print_grcan_devices(void)

{

struct grcan_priv *device;

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 103

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

int count;

count = grcan_dev_count();
printf ("%l GRCAN device(s) present\n", count);

device = grcan_open(0);
if (!device) {
return -1; /* Failure */

if (grcan_canfd_capabl e(device)) {
printf("Device is CANFD capable!\n");

grcan_cl ose(device);

return 0; /* success */

}

Table 12.2. gr can_dev_count function declaration

Proto |i nt grcan_dev_count (voi d)
About |Retrieve number of GRCAN devices registered to the driver.
Return |int. Number of GRCAN devices registered in system, zero if none.

Table 12.3. gr can_open function declaration

Proto |struct grcan_priv *grcan_open(int dev_no)

About |OpensaGRCAN device. The GRCAN deviceisidentified by index. The returned value is used asin-
put argument to all functions operating on the device.

The function allocates DMA buffers as necessary using dynamic memory alocation (mal | oc()).

Param |dev_no [IN] Integer

Deviceidentification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by gr can_dev_count .

Return |Pointer. Status and driver'sinternal device identification.

NULL Indicates failure to open device. Failsif device semaphore fails or device already is
open.

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which GRCAN device.

Table 12.4. gr can_cl ose function declaration

Proto |int grcan_cl ose(struct grcan_priv *d)

About |Closesa previously opened device.
Param |d [IN] pointer
Deviceidentifier. Returned from gr can_open.

Return |int. Thisfunction always returns O (success)

Table 12.5. gr can_canf d_capabl e function declaration

Proto |int grcan_canfd_capabl e(struct grcan _priv *priv);
About | Checksif the given deviceis CANFD capable.

Param |(pri v [IN] Pointer

Deviceidentifier. Returned by gr can_open.

Return |int. Non-zer isdevice is CANFD capable, zero if not.

12.2.1. Static buffer allocation

The function gr can_open uses dynamic memory for alocating DMA buffers. An alternative is to use
gr can_open_user buf , which allows the user to provide the buffers instead. Note that the corresponding
function for closing the DMA channel isgr can_cl ose_user buf inthiscase.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 104

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 12.6. gr can_open_user buf function declaration

Proto |struct grcan_priv *grcan_open_userbuf (int dev_no, void *rxbuf, int
rxbuf _size, void *txbuf, int txbuf_size)

About |OpensaGRCAN device. The GRCAN deviceisidentified by index. The returned valueisused asin-
put argument to all functions operating on the device.

The function requires the caller to provide DMA buffers for the driver to use (r xbuf andt xbuf).
These memory areas shall not be referenced by the user aslong as the driver channel is opened. The
areas can be reused when the driver has been closed with gr can_cl ose_user buf .

Param |dev_no [IN] Integer

Deviceidentification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by gr can_dev_count .

Param |r xbuf [IN] Pointer

RX DMA buffer address. Must be aligned to 1 KiB address boundary.
Param |r xbuf _si ze [IN] Integer

RX DMA buffer sizein bytes. Must be amultiple of 64.

Param |t xbuf [IN] Pointer

TX DMA buffer address. Must be aligned to 1 KiB address boundary.
Param |t xbuf _si ze [IN] Integer

TX DMA buffer sizein bytes. Must be a multiple of 64.

Return |Pointer. Status and driver'sinternal device identification.

NULL Indicates failure to open device. Failsif device semaphore fails or device already is
open.

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which GRCAN device.

Table12.7. gr can_cl ose_user buf function declaration

Proto |int grcan_cl ose_userbuf(struct grcan_priv *d)

About |Closes apreviously opened device.
Param |d [IN] pointer
Deviceidentifier. Returned from gr can_open_user buf .

Return |int. Thisfunction always returns O (success)

12.3. Operation mode

Thedriver always operates in one of four modes: STATE_STARTED, STATE_STOPPED, STATE_BUSOFF or
STATE_AHBERR. In STATE_STOPPED mode, the DMA is disabled and the user is allowed to configure the
device and driver. In STATE_STARTED mode, the receive and transmit DMA can be active and only alimited
number of configuration operations are possible.

Thedriver entersSTATE_BUSOFF modeif abus-off conditionisdetected and STATE_AHBERR if an AHB error
is caused by the GRCAN DMA. When any of these two modes are entered, the user should call gr can_st op()
followd by gr can_st art () to put thedriver in STATE_STARTED again.

Transitions between started and stopped mode are normally caused by the users interaction with the driver API
functions. In somesituations, such CAN bus-off or DMA AHB error condition, thedriver itself makesthetransition
from started to stopped.

12.3.1. Starting and stopping

Thegr can_st art () function placesthe CAN corein STATE_STARTED mode. Configuration set by previous
driver function calls are committed to hardware before started mode enters. It is necessary to enter started modeto

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 105

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

be able to receive and transmit messages on the CAN bus. Thegr can_st ar t () function call will fail if receive
or transmit buffers are not correctly alocated or if the CAN coreis aready isin started mode.

The function gr can_st op() makes the CAN core leave the previous mode and enter STATE_STOPPED
mode. After calling this function, further callstogr can_r ead()/grcanfd_read() orgrcan_wite()

/grcanfd_write() will fail. Itisnecessary to enter stopped mode to change operating parameters of the CAN
core such as the baud rate and for the driver to safely change configuration such as FIFO buffer lengths. The
function will fail if the CAN core already is in stopped mode.

Function gr can_get _st at e() isused to determine the driver operation mode.

Table 12.8. gr can_get _st at e function declaration

Proto |int grcan_get state(struct grcan_priv *d)
About |Get current GRCAN software state

If STATE _BUSOFF or STATE_AHBERRIs returned then the function gr can_st op() shall be
called before continue using the driver.

Param |d [IN] Pointer
Deviceidentifier. Returned by gr can_open.
Return |int. Status

Vaue Description

STATE_STOPPED Stopped

STATE_STARTED Started

STATE_BUSOFF Bus-off has been detected

STATE_AHBERR AHB error has been detected
GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB error.

12.4. Configuration

The CAN core and driver are configured using function calls. Return values for most functions are O for success
and non-zero on failure.

The function gr can_set _si | ent () setsthe SI LENT bit in the configuration register of the CAN hardware
the next time the driver is started. If the SI LENT bit is set the CAN core operates in listen only mode where
grcan_wite()/grcanfd wite() calsfal and grcan_read()/grcanfd_read() calls proceed.
This function fails and returns nonzero if called in started mode.

grcan_set _abort () setsthe ABORT bit inthe configuration register of the CAN hardware. The ABORT bhitis
used to cause the hardwareto stop the receiver and transmitter when an AMBA AHB error isdetected by hardware.
This function fails and returns nonzero if called in started mode.

12.4.1. Channel selection

grcan_set _sel ection() selects active channel used during communication. The function takes a second
argument, a pointer to a grcan_selection data structure described below. This function fails and returns nonzero
if called in started mode.

The grcan_selection data structure is used to select active channel. Each channel has one transceiver that can be
activated or deactivated using this data structure. The hardware can however be configured active low or active
high making it impossiblefor the driver to know how to set the configuration register in order to select apredefined
channel.

struct grcan_sel ection {
int selection;
int enabl e0;
int enabl el;

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 106

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 12.9. grcan_selection member description

M ember Description

selection Select receiver input and transmitter output.
enable0 Set value of output 1 enable

enablel Set value of output 1 enable

12.4.2. GRCAN Timing parameters

grcan_set btrs() setsthetiming registers manually. See the CAN hardware documentation for a detailed
description of the timing parameters. The function takes a pointer to a grcan_timing data structure containing all
available timing parameters. The grcan_timing data structure is described below. This function fails and returns
nonzero if called in started mode.

The grcan_timing data structure is used when setting GRCAN timing configuration registers manually. The pa-
rameters are used when hardware generates the baud rate and sampling points.

struct grcan_timng {
unsi gned char scal er;
unsi gned char ps1;
unsi gned char ps2;
unsigned int rsj;
unsi gned char bpr;

b

Table 12.10. grcan_timing member description

M ember Description

scaler Prescaler

psl Phase segment 1

ps2 Phase segment 2

rs Resynchronization jumps, 1..4

bpr Value Baud rate
0 system clock / (scaler+1) / 1
1 system clock / (scaler+1) / 2
2 system clock / (scaler+1) / 4
3 system clock / (scaler+1) / 8

The function gr can_set _speed() can be used to set the CAN bus frequency. It takes a parameter in Hertz
and calculates the appropriate timing register parameters. If the timing register values could not be calculated,
then anon-zero value is returned.

12.4.3. GRCANFD Timing parameters

grcanfd_set _Dbtrs() setsthetiming registersmanually. Seethe CAN hardware documentation for adetailed
description of the timing parameters. The function takes a pointer to two grcanfd_timing data structure containing
all available timing parameters. One for nominal bit-rate and one for fd bitrate. The grcanfd_timing data structure
is described below. This function fails and returns nonzero if called in started mode.

The grcanfd_timing data structure is used when setting GRCAN timing configuration registers manualy. The
parameters are used when hardware generates the baud rate and sampling points.

struct grcanfd_timng {
unsi gned char scal er;
unsi gned char ps1;
unsi gned char ps2;
unsi gned char sjw;
unsi gned char resv_zero;

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 107

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 12.11. grcanfd_timing member description

M ember Description

scaler Prescaler

psl Phase segment 1

ps2 Phase segment 2

rsw Synchronization Jump Width
resv_zero Reserved.

Thefunction gr canf d_set _speed() can be used to set the CAN bus frequency. It takes two parametersin
Hertz, nominal and FD, and calculates the appropriate timing register parameters. If the timing register values
could not be calculated, then a non-zero value is returned.

12.5. Receive filters

12.5.1. Data structures

Thegrcan_filter structureis used when changing acceptancefilter of the CAN receiver and the SYNC Rx/Tx Filter
usingthefunctionsgr can_set _afilter andgrcan_set sfilter.Thisdatastructureisused differently
for different driver functions.

struct grcan_filter {
unsi gned | ong | ong mask;
unsi gned | ong | ong code;

I

Table 12.12. grcan_filter member description

M ember Description
mask Selects what bitsin code will be used or not. A set bit isinterpreted as don't care.
code Specifies the pattern to match, only the unmasked bits are used in the filter.

12.5.2. Acceptance filter

grcan_set_afilter() setsacceptance filter which is matched for each meassge received. Let the second
argument point to a grcan_filter data structure or NULL to disable filtering and let all messages pass the filter.
M essages matching the condition below are passed and possible to read from user space:

(id XOR code) AND nask = 0

grcan_set _afilter() canbecaledinany modeand never fails.

12.5.3. Sync filter

grcan_set _sfilter () setsRx/Tx SYNC filter which is matched by receiver for each message received. L et
the second argument point to a grcan_filter data structure or NULL to disable filtering and let all messages pass
the filter. Messages matching the condition below are treated as SY NC messages:

(id XOR code) AND nask = 0
grcan_set _sfilter() canbecalledinany modeand never fails.

12.6. Driver statistics

grcan_get st at s() copiesthedriver'sinternal countersto auser provided data area. The format of the data
written is described below (grcan_stats). The function will fail if the user pointer is NULL.

grcan_cl r_stat s() clearsthedriver's collected statistics. This function never fails.

The grcan_stats data structure contains various statistics gathered by the CAN hardware.

struct grcan_stats {
unsi gned int rxsync_cnt;

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 108

https://www.frontgrade.com/gaisler

unsi gned int txsync_cnt;
unsi gned int ahberr_cnt;

unsigned int ints;

unsi gned int busoff_cnt;

s

rRONTGRADE

Gaisler

Table 12.13. grcan_stats member description

Member Description

rxsync_cnt Number of received SY NC messages (matching SY NC filter)
txsync_cnt Number of transmitted SY NC messages (matching SY NC filter)
ahberr_cnt Number of DMA AHB errors

ints Number of times the interrupt handler has been invoked.
busoff_cnt Number of bus-off conditions

12.7. Device status

grcan_get _status() storesthe current status of the CAN core to the location pointed to by the second
argument. This function istypically used to determine the error state of the CAN core. The 32-bit status word can
be matched against the bit masks in the table below.

Table 12.14. Device status word bit masks

Mask

Description

GRCAN_STAT_PASS

Error-passive condition

GRCAN_STAT OFF

Bus-off condition

GRCAN_STAT OR

Overrun during reception

GRCAN_STAT_AHBERR

AMBA AHB error

GRCAN_STAT ACTIVE

Transmission ongoing

GRCAN_STAT_RXERRCNT

Reception error counter, 8-bit

GRCAN_STAT_TXERRCNT

Transmission error counter, 8-bit

grcan_get status() failsif the user pointerisNULL.

12.8. CAN bus transfers

12.8.1. Data structures

The struct grcan_canmsg type is used for GRCAN when transmitting and receiving CAN messages. For GR-
CANFD the struct grcan_canfdmsg type is used instead. The structure describes the drivers view of a CAN mes-
sage. See the transmission and reception section for more information.

struct grcan_canmsg {
char extended;
char rtr;
char unused;
unsi gned char |en;
unsi gned char data[8];
unsigned int id;

s

Table 12.15. struct grcan_canfdmsg member description

Member Description

extended Indicates whether the CAN message has 29 or 11 bits ID tag. Extended or Stan-
dard frame.

rtr Remote Transmission Request bit.

len Length of dat a.

data CAN message data, dat a[0] isthe most significant byte — the first byte.

BCC-UM
Jul 2023, Version 2.2.4

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
109

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
M ember Description
id The ID field of the CAN message. An extended frame has 29 bits whereas a stan-
dard frame has only 11-bits. The most significant bits are not used.
struct grcan_canfdnmsg {
uint8_t extended;
uint8_t rtr;
uint8_t fdopts;
uint8_t len;
uint32_t id;
uni on {
uint64_t dwords[8];
uint8_t bytes[64];
} data;
s
Table 12.16. struct grcan_canmsg member description
Member Description
extended Indicates whether the CAN message has 29 or 11 bits ID tag. Extended or Stan-
dard frame.
rtr Remote Transmission Request bit.
fdopts FD options. Bit1: 1=Switch bit rate. bit2: 1=FD frame.
len Length of dat a.
id The ID field of the CAN message. An extended frame has 29 bits whereas a stan-
dard frame has only 11-bits. The most significant bits are not used.
data CAN message data, dat a[0] isthe most significant byte/lword — the first byte

12.8.2. Transmission

Messages are transmitted using the gr can_wri t e() function for GRCAN cores and grcanfd_wite()
for GRCANFD cores. It is possible to transmit multiple CAN messages in one call. An example transmission is
shown below:

result = grcan_wite(d, & x_nsgs[0], nsgcnt);

On successthe number of CAN messagestransmitted isreturned and on failurea GRCAN_RET _ valueisreturned.
The parameter t x_nsgs points to the beginning of a struct grcan_canmsg structure which includes data, length
and transmission parameters. The last function parameter specifiesthe total number of CAN messagesto be trans-
mitted. For gr canf d_wri t e() the parameter t x_mnsgs points to the beginning of a struct grcan_canfdmsg
instead.

The transmit operation is non-blocking: gr can_wri t e() /grcanfd_write() will returnimmediately with
areturn value indicating the number CAN messages scheduled.

Each message has an individual set of parameters controlled by the struct grcan_canmsg or struct grcan_canfdmsg
type.

The user is responsible for checking the number of messages actually sent when in non-blocking mode. A 3
message transmission reguests may end up in only 2 transmitted messages for example.

Table 12.17. gr can_wr i t e function declaration

Proto |int grcan_wite(struct grcan_priv *d, struct grcan_cannsg *nsg,
size_ t count)

About |Transmit CAN messages

Multiple CAN messages can be transmitted in one call.
Param |d [IN] Pointer
Deviceidentifier. Returned by gr can_open.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 110

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Param |nsg [IN] Pointer
First CAN messages to transmit
Param |count [IN] Integer
Total number of CAN messages to transmit.
Return |int. Status
Value Description
>=0 Number of CAN messages transmitted. This can be less than the
count parameter.
GRCAN_RET_INVARG Invalid argument: count parameter islessthan one or the msg pa-
rameter iSNULL.
GRCAN_RET_NOTSTARTED |Driver is not in started mode or deviceis configured as silent. Noth-
ing done.
GRCAN_RET_BUSOFF A write was interrupted by a bus-off error. Device has |eft started
mode.
GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB error.
Table 12.18. gr canf d_wr i t e function declaration
Proto |int grcanfd wite(struct grcan_priv *d, struct grcan_canfdnmsg *msg,
size_t count)
About | Transmit CAN-FD messages
Multiple CAN messages can be transmitted in one call.
Param |d [IN] Pointer
Device identifier. Returned by gr can_open.
Param |nsg [IN] Pointer
First CAN messages to transmit
Param |count [IN] Integer
Total number of CAN messages to transmit.
Return |int. Status
Value Description
>=0 Number of CAN messages transmitted. This can be less than the
count parameter.
GRCAN_RET_INVARG Invalid argument: count parameter islessthan one or the msg pa-
rameter isSNULL.
GRCAN_RET_NOTSTARTED |Driver is not in started mode or deviceis configured as silent. Noth-
ing done.
GRCAN_RET_BUSOFF A write was interrupted by a bus-off error. Device has |eft started
mode.
GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB error.
12.8.3. Reception

CAN messages arereceived using thegr can_r ead() function for GRCAN and gr canf d_r ead() for GR-

CANFD.

An example is shown below:

enum { NUM MSG = 5 };
struct grcan_cannsg rx_nmsgs[NUM M5Q ;

en = grcan_read(d, & x_nsgs[0], NUM MSG;

The requested number of CAN messages to be read is given in the third argument and messages are stored in

rx_msg

S.

BCC-UM

Jul 2023, Version 2.2.4 111

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

https://www.frontgrade.com/gaisler

The actu

rRONTGRADE

Gaisler

al number of CAN messages received is returned by the function on success. The function will fail and

return a GRCAN_RET _ value if a NULL buffer pointer is passed, buffer length isinvalid or if the CAN coreis
not started.

The receive operation is non-blocking: the function will returnimmediately with the number of messagesreceived.
If no message was available then O is returned.

Table 12.19. gr can_r ead function declaration

Proto |int grcan_read(struct grcan_priv *d, struct grcan_cannsg *nsg,
size_t count)
About |Receive CAN messages
Multiple CAN messages can be received in one call.
Param |d [IN] Pointer
Deviceidentifier. Returned by gr can_open.
Param |nsg [IN] Pointer
Buffer for received messages
Param |count [IN] Integer
Number of CAN messagesto receive.
Return |int. Status
Value Description
>=0 Number of CAN messages received. This can be less than the
count parameter.
GRCAN_RET_INVARG Invalid argument: count parameter islessthan one or the msg pa
rameter isNULL.
GRCAN_RET_NOTSTARTED |Driver is not in started mode. Nothing done.
GRCAN_RET_BUSOFF A read was interrupted by a bus-off error. Device has | eft started
mode.
GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB Error.
Table 12.20. gr canf d_r ead function declaration
Proto |int grcanfd_read(struct grcan_priv *d, struct grcan_canfdnmsg *nsg,
size_t count)
About | Receive CAN-FD messages
Multiple CAN messages can be received in one call.
Param |d [IN] Pointer
Deviceidentifier. Returned by gr can_open.
Param |nsg [IN] Pointer
Buffer for received messages
Param |count [IN] Integer
Number of CAN messagesto receive.
Return |int. Status
Value Description
>=0 Number of CAN messages received. This can be less than the
count parameter.
GRCAN_RET_INVARG Invalid argument: count parameter islessthan one or the nsg pa
rameter isNULL.
GRCAN_RET_NOTSTARTED |Driver is not in started mode. Nothing done.
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 112

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

GRCAN_RET_BUSOFF A read was interrupted by a bus-off error. Device has | eft started
mode.
GRCAN_RET_AHBERR Similar to BUSOFF, but was caused by AHB Error.

12.8.4. Bus-off recovery

If ether grcan_ wite()/grcanfd wite() or grcan_read()/grcanfd read() returns
GRCAN_RET_BUSOFF, then abus-off condition was detected and the driver hasentered STATE_BUSOFF mode.
To continue using the driver, the user shall call gr can_st op() followed by grcan_start () to re-enter
started mode.

12.8.5. AHB error recovery

Similar to the bus-off condition, an AHB error condition can be caused by the GRCAN DMA. The driver will
enter STATE_AHBERR and the recovery procedure is the same as for bus-off.

12.9. Interrupt API

The GRCAN driver hasits own interrupt service routine which may be engaged when the driver isin the started
state. The main purpose of thisISR isto perform error-handling and to make sure the driver has an up-to-date view
of bus errors. It also handles error conditions, statistics and sometimes transitions the driver out from the started
the state. Actual CAN message RX and TX is done with DMA and is not controlled by the ISR.

Thefunction grcan_set_isr() can be used to install acustom function which is called from the GRCAN driver ISR.
A call to the callback will be done from the ISR context. Note that GRCAN driver functions should not be called
from this callback since it may conflict with concurrent callsin non-interrupt context.

Table 12.21. gr can_set _i sr function declaration

Proto |void grcan_set isr(struct grcan_priv *d, int (*isr)(struct
grcan_priv *priv, void *data), void *data)

About | Set user Interrupt Service Routine (ISR) callback function

Thei sr parameter isthe user callback function to be called from the GRCAN ISR.

Only one callback can be registered at atime. A second call togr can_set _i sr replacesthe previ-
ously registered callback.

Ifi sr isNULL, then no user callback will be called from the driver ISR.
Parameter pr i v of the callback isthe driver device handle.

The dat a parameter is passed to the user callback i sr . It may be NULL.
Param |d [IN] pointer
Device handle returned by gr can_open.

Param |i sr [IN] pointer

User callback function as described above. Ifi sr isNULL then the callback is uninstalled, but the
GRCAN ISR is still active.

Param |dat a [IN] pointer
Data to pass to the user callback. It may be NULL.
Return |None.

The GRCAN driver functions are in general not re-entrant for the same device context (struct grcan_priv). That is
adriver design choice to avoid extensive locking to protect driver software state.

12.9.1. Interrupt generation

CAN RX and TX interrupts are not generated by default. The user can control generation of RX and TX interrupts
using the functionsgr can_t xi nt and gr can_r xi nt .

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 113

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Table 12.22. gr can_t xi nt function declaration
Proto |int grcan_txint(struct grcan_priv *d, int n)
About |Generate TX interrupt
The parameter n specifies which events generate CAN TX interrupts:
e 0: never (default)
* 1: every CAN message transmitted
 -1: When all messages have been transmitted
Param |d [IN] Pointer
Deviceidentifier. Returned by gr can_open.
Param |n [IN] Integer
Specifies condition for generating TX interrupt.
Return |int. 0
Table 12.23. gr can_r xi nt function declaration
Proto |int grcan_rxint(struct grcan_priv *d, int n)
About |Generate RX interrupt
The parameter n specifies which events generate CAN RX interrupts:
e 0: never (default)
 1: every CAN message transmitted
e -1: When RX buffer isfull
Param |d [IN] Pointer
Deviceidentifier. Returned by gr can_open.
Param |n [IN] Integer
Specifies condition for generating RX interrupt.
Return |int. 0
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 114

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

13. UART driver

13.1. Introduction

This section describesthe driver used to control the APBUART devices. Thedriver supports operation in interrupt
or non-interrupt mode.

All supported commands and their datastructures aredefined inthe UART driver'sheader filedr v/ apbuart . h.
13.2. Driver registration
This driver uses the driver registration mechanism described in Chapter 10.

Table 13.1. Driver registration functions

Registration method Function

Automatic registration apbuart _autoinit()
Register one device apbuart _register()
Register many devices apbuart _init()

13.3. Opening and closing device

An APBUART device must first be opened and configured before any operations can be performed using the
driver. The number of devicesregistered tothedriver can beretrievedusingapbuar t _dev_count . A particular
device can be opened using apbuart _open and closed using apbuart _cl ose. The functions are described
below.

An opened device can not be reopened unlessthe deviceis closed first. When opening adevice the deviceismarked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal _I dst ub
from the OSAL. Protection isused by all APBUART devices on opening and closing.

During opening of an APBUART device the following steps are taken:
* APBUART devicel/O registers are initialized, including disabling interrupts generation and disabling trans-
mitter and receiver.
 Interna data structures are initialized.
e Thedeviceis marked opened to protect the caller from other users of the same device.

Table 13.2. apbuar t _dev_count function declaration

Proto |i nt apbuart_dev_count (voi d)
About | Retrieve number of APBUART devices registered to the driver.
Return |int. Number of APBUART devices registered in system, zero if none.

Table 13.3. apbuar t _open function declaration

Proto |struct apbuart_priv *apbuart_open(int dev_no)
About |Open an APBUART device

The APBUART deviceisidentified by index. The returned value is used as input argument to all
functions operating on the device.

Param |dev_no [IN] Integer

Deviceidentification number. Must be equal to or greater than zero, and smaller than value returned
by apbuart _dev_count .

Return |Pointer. Status and driver'sinternal device identification.

NULL Indicates failure to open device. Failsif deviceis aready open or if dev_no isout of
range.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 115

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Pointer APBUART device handle to use as input parameter to all device API functions for the
opened device.

Table 13.4. apbuart _cl ose function declaration

Proto |i nt apbuart_cl ose(struct apbuart_priv *priv)
About |Close an APBUART device

The transmitter and receiver are disabled.
Param |d [IN] pointer
Device handlereturned by apbuart _open.

Return |int.
Value Description
DRV_OK |Successfully closed device.
others Device closed, but failed to unregister interrupt handler.

13.4. Status interface

APBUART status can be read by calling the apbuart _get _st at us function. It returns a copy of the UART
status register. The APBUART status register can be written with the function apbuart _set _st at us.

Table 13.5. apbuart _get _st at us function declaration

Proto |uint32_t apbuart _get status(struct apbuart _priv *priv)
About |Read APBUART status register

Param |d [IN] pointer

Device handler returned by apbuart _open.

Return |uint32_t.

Copy of UART status register for deviced

Register definitions for the APBUART status register are available in thefilei ncl ude/ r egs/ ap-
buart - regs. h. The relevant defines are prefixed with APBUART _STATUS .

Table 13.6. apbuart _set st at us function declaration

Proto |void apbuart_set _status(struct apbuart_priv *priv, uint32_t status)
About |Set APBUART status register

Parameter st at us iswritten to the APBUART status register.
Param |d [IN] pointer

Device handlereturned by spi _open.

Param |st at us [IN] uint32_t

Value to write to the status register.

Register definitions for the APBUART status register are available in thefilei ncl ude/ r egs/ ap-
buart - regs. h. Therelevant defines are prefixed with APBUART _STATUS .

Return |None.

13.5. Configuration interface

After opening the device, but before performing transfers, the UART device must be configured. The UART driver
supports configuring baud, parity, flow control and interrupt operation mode individually for each device. UART
receiver and transmitter is enabled when the device is configured with apbuart _confi g.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 116

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The baud, and parity and flow control configuration parameters are applicable to both non-interrupt and interrupt
operation mode. Transmit and receive buffer configuration is only applicable when operating in interrupt mode,

as described in Section 13.7.

A device can only be configured once after it is opened. If the UART device needs reconfiguration, the device
must first be closed, and then opened and then configured again. An attempt to reconfigure an already configured

device will result in a defined return value from apbuar t _confi g

struct apbuart_config {
int baud;
int parity;
int node;
int flow
uint8_t *txfifobuf;
int txfifobuflen;
uint8_t *rxfifobuf;
int rxfifobuflen;

}
Table 13.7. apbuart_config data structure declaration

baud UART baud, bits per second
parity Selects parity mode. Must be one of the following values:
Value Description
UART_PAR_NONE Disable parity bit generation and checking.
UART_PAR_EVEN Enable even parity bit generation and checking.
UART_PAR_ODD Enable odd parity bit generation and checking.
mode Selects between interrupt or non-interrupt operation mode. Must be one of the following values:
Value Description
UART_MODE_NONINT |Non-interrupt operation mode
UART_MODE_INT Interrupt operation mode
flow Enables or disabled flow control. Must be one of the following values:
Value Description
0 Flow control disabled
1 Flow control enabled
txfifobuf Buffer areafor TX SW FIFO
txfifobuflen |Number of bytes allocated for TX SW FIFO
rxfifobuf Buffer areafor RX SW FIFO
rxfifobuflen |Number of bytes allocated for RX SW FIFO
Table 13.8. apbuar t _conf i g function declaration
Proto |int apbuart_config(struct apbuart_priv *priv, struct apbuart_config
*cfg)
About |Configure APBUART device.
The cf g input layout is described by the apbuart_config data structure in Table 13.7. If interrupt
mode is configured, then the driver will register an ISR with help of OSAL.
If the device has already been configured, this function returns DRV_BUSY and no hardware or soft-
ware state is changed. Operation on the device can continue as if the function was never called.
Param |d [IN] pointer
Device handle returned by apbuart _open.
Param |cf g [IN] pointer
Pointer to configuration structure. (See Table 13.7.)
Return |int.
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4

117

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Value Description
DRV_OK Device configured successfully.
DRV_BUSY Device has already been configured.
others Failed to register UART ISR: device configuration aborted.
Notes |A UART device must be configured with apbuart _conf i g before performing transfers using the
device.

13.6. Non-interrupt interface

One receive and one transmit function is available when operating in non-interrupt mode. Both are non-blocking
and operate on one character per function call. apbuart _out byt e is used to transmit one byte of data and
apbuart _i nbyt e is used to receive one byte. If the hardware transmit or receive FIFO is not ready then no
datais transferred and the user isinformed.

As the APBUART implements a hardware transmit FIFO, a successful return from apbuart _out byt e does
not guarantee that the data has been yet been sent on the medium. Theapbuart get st at us service can be
used to determine if al scheduled transmit bytes have left the APBUART controller.

For high performance transfers, or large transfers, the UART driver should be operated in interrupt mode.

The example below opens and configures the first APBUART device in non-interrupt mode. Then one data byte
iswritten and oneis read.

int apbuart_nonint_exanpl e()
{
struct apbuart_priv *device;
int count;
int i;
int data;
struct apbuart_config cfg;

count = apbuart_dev_count();
printf ("% APBUART devi ces present\n", count);

devi ce = apbuart_open(0);
if (!device)
return -1; /* Failure */

cfg. baud = 38400;

cfg.parity = UART_PAR_NONE;

cfg.flow = 0;

cfg. mode = UART_MODE_NONI NT;

/* SWFIFO paraneters are not used in non-interrupt node. */
apbuart _confi g(device, &cfg);

i =0;

do {

i = apbuart_outbyte(device, 'a');
} while (1 !=1i);

do {

data = apbuart_i nbyte(device);
} while (data < 0);
printf("Received 0x%\n", data);

apbuart _cl ose(device);

return 0; /* success */

}

Table 13.9. apbuar t _out byt e function declaration

Proto |i nt apbuart_out byte(struct apbuart _priv *priv, uint8 t data)
About |Send one data byte

The function will try to send one data byte on the UART. The operation is non-blocking and returns O
if the transmit FIFO isfull.

Param |d [IN] pointer
Device handle returned by apbuart_open.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 118

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Param |dat a [IN] uint8_t
Data byte to send

Return |int. Number of bytes copied to transmit FIFO.
0 The data byte was not sent.

1 The data byte was sent.

Notes |Transfer properties are set with the function apbuart _confi g.

Table 13.10. apbuart _i nbyt e function declaration

Proto |int apbuart _inbyte(struct apbuart_priv *priv)

About |Receive one data byte

The function tries to receive one byte of data from the UART receive FIFO. The operation is non-
blocking and returns -1 if the transmit FIFO is empty.

Param |d [IN] pointer

Device handlereturned by apbuar t _open.

Return |int. The received data byte, asuint8_t casted to an int. If no data byte was availablethen -1 isre-
turned.

Notes |Transfer properties are set with the function apbuart _confi g.

13.7. Interrupt interface

Multiple bytes can be handled at once when transmitting and receiving with the UART driver in interrupt mode.
An interrupt service routine, provided by the driver, is responsible for maintaining the hardware FIFOs.

Sending data is done by calling apbuart _wri t e with a pointer to the data to be transmitted together with a
count of bytesto send. The number of bytes accepted by the driver is returned by the function. The function does
not block.

Receiving data is done by calling apbuart _r ead with a pointer to the destination data location and the max-
imum number of bytes to send. The number of bytes written to the destination is returned by the function. The
function does not block.

The example below opens and configures the first APBUART device in interrupt mode. Then 4 data bytes are
written and 4 are read.

int apbuart_i nt _exanpl e()
{
static uint8_t txfifobuf[32];
static uint8_t rxfifobuf[32];
uint8_t userdata[4] = {'A, 'B, 'C, 'D};
struct apbuart_priv *devi ce;
int count;
int i, j;
struct apbuart_config cfg;

devi ce = apbuart_open(0);
if (!device)
return -1; /* Failure */

cfg. baud = 38400;

cfg.parity = UART_PAR_NONE;
cfg.flow = 0O;

cfg. node = UART_MODE_| NT;
cfg.txfifobuflen = 32;

cfg. txfifobuf = txfifobuf;
cfg.rxfifobuflen = 32;
cfg.rxfifobuf = rxfifobuf;
apbuart_confi g(devi ce, &cfg);

[
j

= apbuart_write(device, userdata, 4);
= apbuart _read(devi ce, userdata, 4);

printf("Sent % bytes, received % bytes\n", i, j);

apbuart _cl ose(device);

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 119

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

return 0; /* success */

}

Table 13.11. apbuart _wri t e function declaration

Proto |int apbuart_wite(struct apbuart_priv *priv, const uint8_t *buf, int
count)

About | Send zero or more data bytes

This function sends up to count data bytes from buf to the UART associated with the device handle
d. Number of bytes actually sent can be lessthan count if the hardware and software TX FIFOs be-
come full. The operation is non-blocking.

Param |d [IN] pointer

Device handlereturned by apbuar t _open.
Param |buf [IN] pointer

Data bytesto send

Param |count [IN] Integer
Number of bytesto send

Return |int. Number of bytes actually sent, which may belessthan count if FIFOs become full.

Table 13.12. apbuart _r ead function declaration

Proto |int apbuart_read(struct apbuart _priv *priv, uint8 t *buf, int count)

About | Receive zero or more data bytes

This function receives up to count bytes from the UARTSs associated with the device handle d and
stores the data at location buf . Number of bytes actually received can be lessthan count . The oper-
ation is non-blocking.

Param |d [IN] pointer

Device handlereturned by apbuart _open.
Param |buf [IN] pointer

Receive buffer

Param |count [IN] Integer
Number of bytesto receive

Return |int. Number of bytes actually received, which may belessthan count if FIFOs become empty.

13.8. Restrictions

The UART driver is designed to operate each opened device in one task only. One or more APBUART devices
can be opened and operated by one task, but multiple tasks can not operate on the same APBUART device.

The following functions are always allowed to be called from any task:

e apbuart _dev_count
e apbuart _open

Asthe UART driver implementsits own ISR, it does not support custom user ISR:s.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 120

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

14. SPI driver

14.1. Introduction

This section describes the driver used to control the GRLIB SPICTRL device for SPI master operation.
14.2. Driver registration

This driver uses the driver registration mechanism described in Chapter 10.

Table 14.1. Driver registration functions

Registration method Function
Automatic registration Sspi _autoinit()
Register one device Spi _register()
Register many devices spi _init()

14.3. Opening and closing device

A SPICTRL device must first be opened before any operations can be performed using the driver. The number
of devices registered to the driver can be retrieved using spi _dev_count . A particular device can be opened
usingspi _open and closed spi _cl ose. The functions are described below.

An opened device can not be reopened unlessthe deviceisclosed first. When opening adevice the deviceis marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal _I dst ub
from the OSAL. Protection is used by all SPICTRL devices on opening and closing.

During opening of a SPICTRL device the following steps are taken:
* SPICTRL devicel/O registersareinitialized, including clearing the event register and masking all interrupts.
* Thecoreisdisabled (to allow configuration).
 Internal data structures areinitialized.
e Thedeviceis marked opened to protect the caller from other users of the same device.

Table 14.2. spi _dev_count function declaration

Proto |int spi_dev_count (void)
About |Retrieve number of SPICTRL devices registered to the driver.
Return |int. Number of SPICTRL devices registered in system, zero if none.

Table 14.3. spi _open function declaration

Proto |struct spi_priv *spi _open(int dev_no)

About |OpensaSPICTRL device. The SPICTRL deviceisidentified by index. The returned valueis used as
input argument to all functions operating on the device.

Param |dev_no [IN] Integer

Deviceidentification number. Devices are indexed by the order registered to the driver. Must be equal
to or greater than zero, and smaller than that returned by spi _dev_count .

Return |Pointer. Status and driver's internal device identification.

NULL Indicates failure to open device. Failsif deviceis already open, or invalid dev_no pa-
rameter.

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, idenfifies which SPICTRL device.

Table 14.4. spi _cl ose function declaration

Proto |int spi_close(struct spi_priv *priv)

About |Closesa previously opened device.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 121

https://www.frontgrade.com/gaisler

FRONTGRADE
Param |d [IN] pointer
Device identifier. Returned from spi _open.
Return |int.
Value Description
DRV_OK |Successfully closed device.

14.4. Status service

SPI controller event status can be read by calling the spi _get _event function. It returns a copy of the SPI
controller event register which can be used for determining if a transfer has completed or if more data shall be
written to or read. Bitsin the event register can be cleared by callingspi _cl ear _event.

Table 14.5. spi _get _event function declaration

Proto |uint32_t spi_get_event(struct spi_priv *priv)

About |Get event register value

Bitsin the event register can be cleared by calling spi _cl ear _event.

Param |d [IN] pointer
Device handlereturned by spi _open.
Return |uint32_t.

Current value of the SPI event register.

Register definitions for the SPICTRL event register are availablein thefilei ncl ude/ r egs/
spi ctrl-regs. h. Therelevant defines are prefixed with SPI CTRL_EVENT _.

Table 14.6. spi _cl ear _event function declaration

Proto |void spi_clear_event(struct spi_priv *priv, uint32_t event)

About |Clear bitsin the event register

Param |d [IN] pointer

Device handlereturned by spi _open.
Param [event [IN] uint32_t

Mask of bitsto clear in the SPI event register.

Register definitions for the SPICTRL event register are availablein thefilei ncl ude/ r egs/
spi ctrl-regs. h. Therelevant defines are prefixed with SPI CTRL_EVENT _.

Return |None.

14.5. Transfer Configuration

The SPI driver alows for configuring the SPI controller settings between transfers. Thisis useful when multiple
SPI slaves are attached to the same SPICTRL device, and the slaves have different timing and transfer requiere-
ments. In this case, one configuration record can be associated with each dave device.

Interrupts can be enabled for transfers by configuring the SPI controller event mask register viathe configuration
service. Thisallows for user notification of when the transmit queue is empty or when the receive queue is non-
empty.

The driver supports reconfiguration of the SPI controller at any time between calls to spi _stop and
spi _start.

struct spi_config {

unsi gned int fregq; /* SPI clock frequency, Hz */
int node; /* SPI node */
enum spi _wordl en wordl en; /* SPI Word length */
int intnmask; /* SPI controller interrupt mask */
int nmsb_first; /* 1f true then send Msb first, else LSh. */
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 122

https://www.frontgrade.com/gaisler

int

sync;

uint32_t asl ave;

int
int
int
int

s

cl ock_gap;
tac;

asel del ;

i gsel ;

rRONTGRADE

Gaisler

/* Synchronous TX/ RX node */

/* Automatic slave select, active high nask */

/* MODE. CG */

/* Toggl e automatic slave select during clock gap */
/* Automatic slave select delay */

/* Ignore SPISEL input */

Table 14.7. spi_config data structure declaration

freg The SPI clock frequency in Hz. Used to calculate values for the hardware registers controlling
SPICLK.
mode SPI mode0, 1, 2, or 3
wordlen |Word length. Must be one of the following values:
Vaue Description
SPI_WORDLEN_4 4 bit word length
SPI_WORDLEN_5 5 bit word length
SPI_WORDLEN_6 6 bit word length
SPI_WORDLEN_7 |7 bit word length
SPI_WORDLEN_8 8 bit word length
SPI_WORDLEN_9 9 bit word length
SPI_WORDLEN_10 |10 bit word length
SPI_WORDLEN_11 |11 bit word length
SPI_WORDLEN_12 |12 hit word length
SPI_WORDLEN_13 |13 hit word length
SPI_WORDLEN_14 |14 bit word length
SPI_ WORDLEN_15 |15 hit word length
SPI_WORDLEN_16 |16 hit word length
SPI_WORDLEN_32 |32 hit word length
intmask Interrupt mask.
Thisfield iswritten to the SPI controller Mask register when spi _conf i g iscalled.
Register definitions for the SPI controller Mask register are available in thefilei n-
cl ude/ regs/ spictrl-regs. h. Therelevant defines are prefixed with SPI CTRL_MASK .
msb_first |If true then send MSh first, else LSh. This controls the SPI controller Mode register bit named Re-
verse data (REV).
sync Synchronous TX/RX mode.
Value Description
0 Allow RX to overrun.
1 Prevent RX from overrunning.
adave Automatic slave select, active high mask
Value Description
0 Disable automatic slave select.
mask Thisvalueiswritten, inverted, to the SPI controller automatic slave select
register. In addition, automatic slave select (ASEL) will be enabled in the
SPI controller mode register.
clock_gap |Number of SCK clock cyclesto insert between consecutive words. A value between 0 and 31.
tac Toggle automatic slave select during clock gap
Value Description
0 Set MODE. TAC=' 0
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4

123

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

1 Set MODE. TAC=' 1
aseldel Automatic slave select delay.

A valuein the range 0..3 which is written to MODE. ASELDEL.

igsel Ignore SPISEL input
Value Description
0 Set MODE. | GSEL=" 0'
1 Set MCDE. | GSEL=" 1"

Table 14.8. spi _conf i g function declaration

Proto |int spi_config(struct spi_priv *priv, struct spi_config *cfg)

About | Set transfer configuration in hardware.

The cf g input layout is described by the spi_config data structure in Table 14.7.
Param |d [IN] pointer
Deviceidentifier. Returned from spi _open.

Param |cf g [IN] pointer
Address to where the driver will read the transfer configuration from. (See Table 14.7.)
Return |int.

Value Description

DRV_OK Successfully configured device.

DRV_FAIL Invalid word length or frequency field in cf g. Device not configured.
DRV_STARTED |Deviceisin started mode. Device not configured.

A default configuration is available in the symbol SPI _ CONFI G_DEFAULT:
extern const struct spi_config SPI_CONFI G DEFAULT;

It can be used to derive default parameters.

14.6. Transfer Interface

Two functions are available for performing SPI transfers. Thespi _wr i t €32 function writeswords to the hard-
ware transmit queue, and spi _r ead32 reads words from the hardware receive queue. These functions never
block and may return before the requested number of words have been processed. The transfer parameters set by
thelast call tospi _confi g are used.

For the user to determine status of the transfer queues during transfers, the spi _st at us service can be used to
read out the event register. Transmit queue status is obtained by observing the Not full (NF) and Last character
(LT) flags. Likewise, existence of receive data is determined by testing bits Not empty (NE). In addition, the bit
Transfer in progress (TIP) can be used to determine if atransfer has completed.

For high performance transfers, or large transfers, using a custom interrupt service routine can come in handy. It
can be responsible for supplying the transmit queue with data and for reading out received data to a user receive
buffer. When the transfer is considered complete, the user may be informed by for example unblocking it with a
semaphore or an event. As the driver usage varies heavily with the application and the connected SPI slaves, no
default interrupt service routine is provided by the SPI driver.

If the user has activated interrupts at configuration, the user must install an interrupt handler prior to calling
spi_write32andspi _read32.

Before the transfer functions can be used, the core must be configured with spi _confi g and enabled with
spi _start.Atend of transfers, the spi _st op function can be called to disabled the SPI core. Disabling the
coreisonly needed if it shall be reconfigured.

The example below opens, configures and enables the first SPICTRL device. Then 8 words are written and 8
words are read.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 124

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
int spi_transfers(void)
{
struct spi_priv *device;
int i;
int ret;
struct spi_config cfg;
uint32_t txbuf[8];
uint32_t rxbuf[8];
ret = spi_dev_count();
printf ("% SPICTRL devices present\n", ret);
device = spi_open(0);
if (!device) {
return -1; /* Failure */
}
/* Base config on sane default */
cfg = SPI_CONFI G_DEFAULT;
cfg.freq = 125 * 1000;
cfg.node = 1;
cfg.wordl en = SPI _WORDLEN 8;
ret = spi_config(device, &cfg);
if (DRV.OK I=ret) {
return -1;
}
spi _start();
i =0;
do {
i += spi_wite32(device, & xbufl[i], 8-i);
} while (i<8);
i =0;
do {
i += spi_read32(device, &xbufl[i], 8-i);
} while (i<8);
spi _stop();
spi _cl ose(device);
return 0; /* success */
}
Table 14.9. spi _st art function declaration
Proto |int spi_start(struct spi_priv *priv)
About |Start SPI device. The SPICTRL coreis enabled.
Param |d [IN] pointer
Device handle returned by spi _open.
Return |int.
Value Description
DRV_OK Device was started by the function call.
DRV_STARTED |Device dready in started mode. Nothing performed.
Table 14.10. spi _st op function declaration
Proto |int spi_stop(struct spi_priv *priv)
About |Stop SPI device. The SPICTRL coreisdisabled.
Param |d [IN] pointer
Device handle returned by spi _open.
Return |int.
Value Description
DRV_OK |Success
Table 14.11. spi _wr i t €32 function declaration
Proto |int spi_wite32(struct spi_priv *priv, const uint32_t *txbuf, int
count)
About | Writewordsto SPICTRL transmit queue.
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 125

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The function tries to write count words of the configured word length to the transmit queue. Trans-
mission dataisindicated by t xbuf . Each word is represented by an uint32_t, regardless of config-
ured word length. Wordsint xbuf shall be represented with its LSB at bit 0.

If t xbuf isNULL then zero valued bits will be shifted out on MOSI. The function returns as soon as
the transmit queueis full or the requested number of words have been installed.

This function never blocks.

Transfer properties are set with the the function spi _confi g.

Param |d [IN] pointer

Device handle returned by spi _open.

Param |t xbuf [IN] pointer

Transmit data. If t xbuf isNULL then zero valued words are shifted out.
Param |count [IN] Integer

Number of words to transmit

Return |int. Number of words written to transmit queue, zero if none.

Table 14.12. spi _r ead32 function declaration

Proto |int spi_read32(struct spi_priv *priv, uint32_t *rxbuf, int count)
About |Read words from SPICTRL receive queue.

The function triesto read count words of the configured word length from the receive queue. Re-
ceived dataiswritten to the location r xbuf . Each word is represented by an uint32_t, regardless of
configured word length. Words stored in r xbuf are represented with its LSB at bit O.

If r xbuf isNULL then the MISO bits are not stored. The function returns as soon as the receive
queue is empty or the requested number of words have been read.

This function never blocks.

Transfer properties are set with the the function spi _confi g.
Param |d [IN] pointer

Device handle returned by spi _open.

Param |r xbuf [OUT] pointer

Received data. Can be NULL to ignore shifted in data.

Param |count [IN] Integer

Number of wordsto receive

Return |int. Number of words read from receive queue, zero if none.

14.7. Synchronous TX/RX mode

The SPI configuration option cf g. sync is used to determine the behaviour when anspi _wr i t €32 operation
would cause the SPI receive queue to become full. The sync option is set and remembered when the SPI driver
is configured using spi _confi g.

When cf g. sync=0, calsto spi _write32 will write words to the SPI transmit queue as long as there is
room in the SPI transmit queue. The receive queue may overrun. It is up to the driver user to empty the SPI
receive queue. Typically thisinvolves user knowledge of how many SPI words are outstanding and restrictscalling
spi _write32 towhenitwill not cause the receive queue to overrun. One scenario is when the SPI daveisan
output device, only capable of receiving commands but never sends anything back to the SPI master.

If cf g. sync=1, then callstospi _wri t e32 will only write words to the SPI transmit queue when it is guar-
anteed that the receive queue will not overrun. This relaxes the restrictions on how callstospi _w it e32 and

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 126

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

spi _r ead32 can be combined. It meansthat the user does not have to maintain the number of outstanding words
and the receive queue will never overrun.

For both settings of the cf g. sync option, the spi _wri t e32 function writes at most count words to the

transmit queue and returns the number of words actually written. The differenceiswhen spi _wite32 isa-
lowed to write to the queue.

14.8. Slave select

When performing SPI transfers, the user may want to select and deselect SPI slaves. This can be done with the the
function spi _sl ave_sel ect . Another option isto use a dedicated GPIO signal.

Table 14.13. spi _sl ave_sel ect function declaration

Proto |int spi_slave_select(struct spi_priv *priv, uint32_t mask)
About |Select SPI dave

This function writes the inverted value of sl avemask parameter to the SPICTRL SLV SEL register.
This function shall not be called when atransfer isin progress.

Param |d [IN] pointer
Deviceidentifier. Returned from spi _open.
Param |mask [IN] uint32_t

Slave mask
Return |int.
Value Description
DRV_OK Success
DRV_NOIMPL Slave select not availablein SPICTRL or mask out of range.
DRV_WOULDBLOCK Transfer in progress

Thedriver functionsspi _read32() andspi _write32() do not automatically perform slave select.

14.9. Restrictions

The SPI driver is designed to operate each opened devicein onetask only. One or more SPI devices can be opened
and operated by one task, but multiple tasks can not operate on the same SPI device.

The following functions are always alowed to be called from any task:
e spi _dev_count
e Spi _open

The following functions are allowed to be called from an ISR.
e spi _get _event
e spi _cl ear_event

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 127

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

15. 12C master driver

15.1. Introduction

This section describes the driver used to control the GRLIB 12CM ST device for 12C master operation.
15.1.1. User Interface

This section covers how the driver can be interfaced to an application to control the I2CMST hardware.

Controlling the driver and deviceisdone with functions provided by the driver prefixed withi 2crst _. All driver
functions take a device handle returned by i 2cnst _open as the first parameter. All supported commands and
their data structures are defined in the driver's header filedr v/ i 2cnst . h.

15.1.2. Features

« All driver functions are non-blocking.

e Optionally interrupt driven

» User supplies 12C requests to the driver by lists of of packets.
* Automatic retry operation

15.2. Driver registration
This driver uses the driver registration mechanism described in Chapter 10.

Table 15.1. Driver registration functions

Registration method Function

Automatic registration i 2cnst _autoinit()
Register one device i 2cnst _register()
Register many devices i 2cmst _init()

15.3. Examples

Examplesare availableinthesr ¢/ | i bdr v/ exanpl es directory in the BCC distribution.

15.4. Opening and closing device

A 12CMST device must first be opened before any operations can be performed using the driver. The number of
devicesregistered to the driver can beretrieved usingi 2cnst _dev_count . A particular device can be opened
usingi 2cnst _open and closedi 2cnst _cl ose. The functions are described below.

An opened device can not be reopened unlessthe deviceisclosed first. When opening adevice the deviceis marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal _I dst ub
from the OSAL. Protection is used by all I2CM ST devices on opening and closing. It is assumed that at most one
thread operates on one I2CM ST device at atime.

During opening of al2CMST device the following steps are taken:
» Thedeviceis marked opened to protect the caller from other users of the same device.
* Internal data structures are initialized.
e Thedriver is set to stopped operation mode.

The example below printsthe number of I2CM ST devicesto screen then opensand closesthefirst I2CM ST device
present in the system.

int print_i2cnst_devices(void)

{
struct i2cnst_priv *device;
int count;

count = i 2cnst_dev_count();
printf ("%l |2CMST devi ce(s) present\n", count);

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 128

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

device = i2cnst_open(0);
if (!device) {

return -1; /* Failure */
}

i 2crst _cl ose(devi ce);
return 0; /* success */

}

Table15.2.i 2cst _dev_count function declaration

Proto |int i2cnst_dev_count (voi d)
About |Retrieve number of I2CM ST devices registered to the driver.
Return |int. Number of I2CM ST devices registered in system, zero if none.

Table 15.3.i 2cnst _open function declaration

Proto |struct i2cnst_priv *i2cnst_open(int dev_no)

About |Opensal2CMST device. The I2CM ST deviceisidentified by index. The returned value isused asin-
put argument to all functions operating on the device.

Param |dev_no [IN] Integer

Device identification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
byi 2cnst _dev_count.

Return |Pointer. Status and driver'sinternal device identification.

NULL Indicates failure to open device. Failsif device semaphore fails or device already is
open.

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which I2CM ST device.

Table15.4. i 2cnst _cl ose function declaration

Proto |int i2cnst_close(struct i2cnst_priv *d)

About |Closesa previously opened device.

Param |d [IN] pointer

Deviceidentifier. Returned fromi 2cnst _open.
Return |int. DRV_OK

No device 1/O registers are modified by the open and close functions.

15.5. Operation mode
The driver always operates in one of two modes: started or stopped,

In stopped mode, bus operation is disabled and the user is allowed to configure the device and driver. Interrupts
are never used in stopped mode.

In started mode, bus operations can be active. Functions for configuring the driver are not available in stopped
mode.

Only the functionsi 2cnst _start () andi 2cnst _st op() changes the operation mode while the deviceis
open. The driver does not transfer between started and stopped by itself.

15.5.1. Starting and stopping

Thei 2cnst _start () function placesthedriver in started mode. Configuration set by previousdriver function
callsare committed to hardware and statistics are cleared before started mode enters. It is necessary to enter started
mode to be able to generate transactions on the 12C bus.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 129

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The function i 2cnst _st op() makes the driver core leave the started mode and enter stopped mode. After
calling thisfunction, further callstoi 2crst _r equest () will return DRV_BUSY and do not generate any side
effects. It is necessary to enter stopped mode to change operating parameters of the device such as bitrate, retries,
interrupt mode and address length The function will return DRV_BUSY if the driver is already stopped.

Functioni 2cnst _i sstart ed() isusedto determine the driver operation mode.

Table 15.5.1 2cst _st art function declaration

Proto |int i2cmst_start(struct i2cnst_priv *priv)

About |Start driver.

Param |d [IN] pointer

Device handlereturned by i 2cnst _open.

Return |int.
Value Description
DRV_OK Device was started by the function call.
DRV_BUSY Device aready in started mode. Nothing performed.

Table 15.6.1 2cnst _st op function declaration

Proto |int i2cnst_stop(struct i2cnst_priv *priv)

About |Stop driver.

Param |d [IN] pointer

Device handlereturned by i 2crst _open.

Return |int.
Value Description
DRV_OK Device was stopped by the function call.
DRV_BUSY Device already in stopped mode. Nothing performed.

Table 15.7.1 2cnst _i sst art ed function declaration

Proto |int i2cnst_isstarted(struct i2cnst_priv *d)

About | Get current I2CM ST software running state

Param |d [IN] Pointer

Deviceidentifier. Returned by i 2cnst _open.

Return |int. Status

Value Description
0 Stopped
1 Started

15.6. Configuration

The driver is configured using function calls which are available only when in stopped operation mode. Return
value for most of the functionsis DRV_CK for success and non-zero on failure.

15.6.1. Transaction retries

i 2cnet _set _retries() configuresthe number of retries per transaction.

Table15.8.1 2cnst _set _retri es function declaration

Proto |int i2cnst_set_retries(struct i2cnmst_priv *d, int retries)

About | Set number of retries per transaction

BCC-UM
Jul 2023, Version 2.2.4

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
130

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The function configures how many retry attempts to perform for each 12C transaction packet. If r e-
tri es is0, then only onetry is performed and no retries.

A retry is performed if arbitration islost or on acknowledge error. For example on mult-master con-
gestion.

Param |d [IN] pointer

Device handlereturned by i 2crrst _open.

Param |retri es [IN] Integer
Number of retries

Return |int.
Value Description
DRV_OK Success
DRV_BUSY Devicein started mode. Nothing performed.
DRV_INVAL Parameter r et r i es islessthan 0. Nothing performed.

15.6.2. Speed

Thefunctioni 2cnst _set _speed() can be used to set the I2C bus bitrate. It takes a parameter in bit/s and
calculates the appropriate scaler register parameters. Commit to registersis performed the next time started mode
is entered.

Two constants are predefined indr v/ i 2cnst . h:

enum {
| 2CMBT_SPEED _STD = 100000, /* Standard speed (100 kbit/s) */
| 2CMBT_SPEED _FAST = 400000, /* Fast speed (400 kbit/s) */

h

Table 15.9.i 2cnst _set _speed function declaration

Proto |int i2cnst_set speed(struct i2cnst_priv *d, int speed)
About | Set 12C bus speed

The function configures speed in bit/s for bus accesses.
Param |d [IN] pointer
Devicehandlereturned by i 2cnst _open.

Param |speed [IN] Integer

speed in bit/s
Return |int.
Value Description
DRV_OK Success
DRV_BUSY Device in started mode. Nothing performed.
DRV_INVAL Parameter speed islessthan 0. Nothing performed.

15.6.3. Interrupt driven operation
The driver can operate in interrupt driven or non-interrupt driven mode. Both are non-blocking.

When operating in interrupt driven mode, all 12C transfer operations are triggered by interrupt requests from the
[2CM ST device to the processor.

When interrupt driven mode is disabled, then the 12C bus operations are triggered by the user calling
i 2cnet _request () ori 2cnst_recl ai m().

Table15.10.i 2cnst _set _i nt er r upt _node function declaration

‘Proto ‘i nt i2cnst_set _interrupt_node(struct i2cnst_priv *d, int enable) ‘

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 131

https://www.frontgrade.com/gaisler

FRONTGRADE
About | Configure interrupt driven operation
Param |d [IN] pointer
Device handlereturned by i 2cnst _open.

Param |enabl e [IN] Integer
interrupt mode

Value Description
0 Disable interrupt driven operation
1 Enable interrupt driven operation
Return |int.
Value Description
DRV_OK Success
DRV_BUSY Devicein started mode. Nothing performed.

Notes |In non-interrupt driven mode, the user needsto call i 2cnst _r equest () or
i 2cnst _recl ai m() for 12C transactions to progress.

15.6.4. 12C address width

12C addresswidth of 7 and 10 bitsissupported.i 2cnst _set _ten_bit _addr () isusedto configure address
width.

Table15.11.i 2cnst _set _ten_bit_addr function declaration

Proto |int i2cnst_set _ten_bit_addr(struct i2cnst_priv *d, int enable)
About | Set 12C address width

The function configures the 12C address width for all transactions.
Param |d [IN] pointer
Device handlereturned by i 2crst _open.

Param |enabl e [IN] Integer
10 hit 12C address

Value Description
0 7 bit 12C address
1 10 bit 12C address
Return |int.
Value Description
DRV_OK Success
DRV_BUSY Devicein started mode. Nothing performed.

15.7. Driver statistics

The driver maintains driver statistics as described by the data structure st r uct i 2cnst _st at s:

struct i2cnmst_stats {
uint32_t packets_sent;
uint32_t arbitration_|ost;
ui nt32_t packet s_nack;

}s
Table 15.12. i2cmst_stats data structure declaration

packets sent Number of successful 12C transactions
arbitration_lost Number of arbitration lost events
packets nack Number of acknowledge error events
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 132

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

i 2cnst _get _st at s() copiesthedriver'sinternal statisticsto auser buffer.i 2cnst _cl r_st at s() clears
the driver's collected statistics.

Table 15.13.i 2cnst _get _st at s function declaration

Proto |int i2cnst_get stats(struct i2cnst_priv *d, struct i2cnst_stats
*stats)

About | Readsthe current driver statistics collected from earlier events. The statistics are stored to the ad-
dress given by the second argument. The layout and content of the statistics are defined by the
i 2cnst _st at s data structure.

Note that the snapshot is taken without lock protection. As a consegquence the statistics may not be
synchonized with each other. This could be caused if the function is interrupted by athe driver inter-
rupt. Calling this function when the driver isin stopped mode will always give consitent statistics.

Param |d [IN] pointer
Device handle returned by i 2cnst _open.

Param |st at s [OUT] pointer
A snapshot of the current driver statistics are copied to this user provided buffer.

Return |None.

Table15.14.i 2cnst _cl r _st at s function declaration

Proto |int i2cnst_clr_stats(struct i2cnst_priv *d)
About |Resets statistic countersto O.

Param |d [IN] pointer

Device handlereturned by i 2cst _open.

Return |int. DRV_OK

15.8. 12C bus transfer
15.8.1. Data structures

15.8.1.1. Packet

struct i2cnst_packet isused by the application to describe I2C bus transfers. The structure is available
indrv/i 2cnst . h and describes how the drivers shall perform atransfer. See the request and reclaim sections
for more information.

/* Driver representation of an |12C bus transfer */
struct i2cmst_packet {

struct i2cmst_packet *next; /* Next packet in list */

/* Options and status */

ui nt 32_t flags; /* Modifiers and status */

int sl ave; /* Sl ave address */

ui nt 32_t addr; /* Use with | 2CVBT_FLAGS_ADDR */
int I engt h; /* Size of payload */

uint8_t *payl oad; /* Read or wite data */

I

Table 15.15. i2cmst_packet data structure declaration

next Pointer to the next packet in alist. NULL marks end of chain.

flags Transfer modifiers and status
Bits Description (prefixed | 2CMST_FLAGS)
READ Set by user to perform aread (1) or write (0) transfer.
ADDR Set by user to specify that a|2C device specific location shall be

addressed. This bit qualifiesthe addr field.
FI NI SHED Set by driver to indicate that it is done with the transfer packet
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 133

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
RETRI ED Set by driver to indicate that the request was retried at least once
due to acknowledge or arbitration error.
ERR Set by driver to indicate that the maximum number of retries was
reached.
dave 12C address
addr |2C device local address. Qualified by the | 2CVMST_FLAGS_ADDR flag.
length Number of bytesin payl oad.
payload Data buffer for read or write transfer.
15.8.1.2. List

Packets are chained together on asingle linked list, represented by st ruct i 2cnst _| i st , when the user and
driver communicates. A packet list hasahead and at ai | node which points to the first and last packet on the
list respectively. Each packets next field points to the next packet in the list. An empty list is represented by a
struct i2cnst _|ist whereboth head and tail is NULL.

struct i2cmst_list {
struct i2cmst_packet *head; /* First packet in list */
struct i2cmst_packet *tail; /* Last packet in list */

¥
15.8.2. Request

Transfersare generated using thei 2cnst _r equest () function. Itispossibleto schedule multiple | 2C transfer
requestsin one call. An exampleis shown below:

struct i2cnst_list nylist;
struct i2cnst_packet wpkt =
struct i2cnst_packet rpkt =
uint8_t buf[2];

{0}
{0}

/* Wite the byte value Oxa to device at |2C address 0x70 */
buf [0] = Oxa;

wpkt . sl ave = 0x70;

wpkt . payl oad = &buf[0];

wpkt . next = &rpkt;

/* Read a byte from device at |2C address 0x50 */
rpkt.flags = | 2CMST_FLAGS_READ;

rpkt. sl ave = 0x50;

rpkt. payl oad = &uf[1];

nylist.head = &wpkt;

nylist.tail = &rpkt;
result = i2cnst_request(d, &mwylist);

The transmit operation is non-blocking: i 2cnst _r equest () will return immediately.

On success, the transfers are scheduled to the driver. The parameter myl i st points to the list header (struct
i2cmst_list) which contains the individua reguests.

Each request has an individual set of parameters controlled by the struct i2cmst_packet type.

The driver never copies user data, so the packet nodes and payload must be valid until they have been reclaimed
back from the driver. Packets must not be modified by the user while they are under control of the driver.

Table 15.16.1 2cnst _r equest function declaration

Proto |int i2cnst_request(struct i2cnst_priv *d, struct i2cmst_list *chain)
About |Request 12C transfer

Multiple transfers can be scheduled in one call.
Param |d [IN] Pointer

Deviceidentifier. Returned by i 2crst _open.
Param |chai n [IN] Pointer

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 134

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Listof st ruct packet
Return |int. Status

DRV_OK Successfully scheduled requests
DRV_INVAL Invalid list
DRV_BUSY Driver isnot in started mode. Nothing done

15.8.3. Reclaim

|2C transfer requests are brought back to theuser usingthei 2cnst _r ecl ai n{) function. An exampleisshown
below:

int cnt = 0;

/* Reclaimat |east tw packets */
while (cnt < 2) {
struct i2cnst_list nylist = { 0 };
struct i2cnsg_packet *pkt;
int result;

result = i2cnst_reclaimd, &mwlist);
if (DRV.OK !'=result) {
conti nue;

]

pkt = nylist. head;
while (pkt) {
/* Do sonmething with the pkt */
cnt ++;
pkt = pkt->next;
}

The actual number of transfer requests reclaimed can be calculated by iterating the list.
Thereclaim operation is non-blocking: the function will return immediately with either an empty or populated list.

Table 15.17.i 2cst _r ecl ai mfunction declaration

Proto |int i2cnst_reclain(struct i2cnst_priv *d, struct i2cnst_list *chain)

About | Reclam 12C transfer requests back from the driver

Finished requests are put on chai n. The user has ownership of the reclaimed packets of these pack-
ets and the driver will no longer reference them, including the payload.

Param |d [IN] Pointer

Deviceidentifier. Returned by i 2cnst _open.

Param [chai n [IN] Pointer

Listof st ruct packet reclaimed by the driver.

Return |int. Status

DRV_OK At least one request was reclaimed

DRV_WOULDBLOCK No request was reclaimed

15.9. Synchronous example

Single synchronous 12C transfers can be performed with the following example functions i 2cwr i t e() and
i 2cread().

/* Wite buf on 12C bus and return when done */
int i2cwite(

struct i2cnst_priv *dev,

int devaddr,

uint8_t *buf,

int length

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 135

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

return dosi npl e(dev, 0, devaddr, 0, buf, length);
}

/* Read from|2C bus to buf and return when done */
int i2cread(

struct i2cnst_priv *dev,

int devaddr,

uint8_t *buf,

int length

return dosi npl e(dev, |2CMST_FLAGS_READ, devaddr, 0, buf, length);

/* Sel f-contained synchronous request and reclaim?*/
int dosi npl e(

struct i2cnst_priv *dev,

int uflags,

int devaddr,

uint16_t menaddr,

ui nt8_t *payl oad,

int length

struct i2cnst_packet pkt;
struct i2cnst_list pkts;
int ret;

pkt.next = NULL;
pkt.flags = ufl ags;
pkt.slave = devaddr;
pkt.addr = menmaddr;
pkt.length = |l ength;

pkt. payl oad = payl oad;

pkts. head = &pkt;
pkts. tail &pkt ;
i 2cst _r equest (dev, &pkts);
if (ret) {
return 1;
}

struct i2cnst_packet *ptr = NULL;
while (ptr == NULL) {
i 2cnst _recl ai m(dev, &pkts);
ptr = pkts. head;

}

return ptr->flags & | 2CMST_FLAGS_ERR;

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 136

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

16. Timer driver

16.1. Introduction

This section describes the driver used to control the GPTIMER and GRTIMER devices. Each GPTIMER/GR-
TIMER device can host multiple subtimers. The timer driver alows for opening timer devices using the timer
device API. When atimer device is open, its subtimers can be opened using the subtimer API.

16.2. Driver registration
This driver uses the driver registration mechanism described in Chapter 10.

Table 16.1. Driver registration functions

Registration method Function

Automatic registration timer_autoinit()
Register one device timer_register()
Register many devices tinmer_init()

16.3. Device interface

The device interface handles device level operations such as scaler and latch configuration.

16.3.1. Opening and closing device

A timer must first be opened before any operations can be performed using the driver. The number of timer devices
(GPTIMER/GRTIMER) registered to the driver can beretrieved usingt i mer _dev_count . A particular timer
devicecanbeopenedusingt i mer _open andclosedusingt i ner _cl ose. Thefunctions are described below.

An opened timer device can not be reopened unlessit is closed first. When opening a device the device is marked
opened by the driver. This open and close operations are thread-safe by protecting from other threads by using
osal _| dst ub fromthe OSAL.

During opening of atimer device the following steps are taken:
» Devicel/O registers areinitialized, including disabling timer latching.
* Internal data structures are initialized.
» Thedeviceis marked opened to protect the caller from other users of the same device.

The timer device open operation does not affect the state of the device subtimers.

Table16.2.t i mer _dev_count function declaration

Proto |int tinmer_dev_count(void)
About |Retrieve number of timer devices, GPTIMER or GRTIMER, registered to the driver.
Return |int. Number of timer devices registered in system, zero if none.

Table 16.3.t i mer _open function declaration

Proto |[struct tiner_priv *tiner_open(int dev_no)

About |Open atimer device

The device to open isidentified by timer device index (dev_no). The returned value is a device han-
dle used as input argument to all functions operating on the timer device.

Timer device configuration and latch registers are cleared. Subtimers are not touched.

Param |dev_no [IN] Integer
Deviceidentification number. Must be equal or greater than zero, and smaller than that returned by
timer_dev_count.

Return |Pointer. Status and driver's internal subtimer identification.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 137

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Value Description
NULL Indicates failure to open subtimer. Fails if subtimer is already open of if dev_no isout
of range.
Pointer Device handle used to access the timer device API functions.

Table 16.4.t i mer _cl ose function declaration

Proto |int timer_close(struct tinmer_priv *priv)

About |Close atimer device

If any of the device subtimers are open, then they are closed. Timer device configuration register is
cleared.

Param |pri v [IN] pointer
Device handlereturned by t i mer _open.
Return |int. DRV_OK

16.3.2. Device control

Thetimer driver exportsthe timer device global registersto the user. Setter and getter function is defined for these
registers. For information on the registers available, see the component User's Manual .

Table16.5.ti mer _set _scal er function declaration

Proto |void tiner_set scaler(struct timer_priv *priv, uint32_t val ue)
About |Set scaler value register

Param |pri v [IN] pointer

Devicehandlereturned by t i mer _open.
Param |val ue [IN] uint32_t

Valueto writeto the timer Scaler value register.

Return |None.

Table16.6.ti ner_set _scal er _r el oad function declaration

Proto |void tiner_set scaler _reload(struct tiner_priv *priv, uint32_t val-
ue)

About |Set scaler_reload value register

Param |pri v [IN] pointer

Devicehandlereturned by t i ner _open.

Param |val ue [IN] uint32_t

Value to write to the timer Scaler reload value register.
Return |None.

Table16.7.ti mer _get _cf g function declaration

Proto |uint32_t timer_get cfg(struct timer_priv *priv)

About | Get configuration register

Param |pri v [IN] pointer
Device handlereturned by t i mer _open.
Return |uint32_t.

Value read from timer Configuration register.

Register definitions for the timer Configuration register are availablein thefilei ncl ude/ r egs/
gpti ner-regs. h. Therelevant defines are prefixed with GPTI MER_CFG _.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 138

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table16.8.ti mer _set _cf g function declaration

Proto |void tiner_set cfg(struct tinmer _priv *priv, uint32_t val ue)

About | Set configuration register

Param |pri v [IN] pointer

Devicehandlereturned by t i ner _open.
Param |val ue [IN] uint32_t

Value to write to timer Configuration register.

Register definitions for the timer Configuration register are availablein thefilei ncl ude/ r egs/
gpti ner-regs. h. Therelevant defines are prefixed with GPTI MER_CFG .

Return |None.

Table16.9.ti mer _set _| at ch_cf g function declaration

Proto |void tiner_set latch_cfg(struct tinmer_priv *priv, uint32_t val ue)

About | Set timer latch configuration register

Param |pri v [IN] pointer

Device handlereturned by t i ner _open.

Param |val ue [IN] uint32_t

Value to write to the Timer latch configuration register.

Return |None.

16.4. Subtimer interface
The subtimer API operates on individual subtimers of atimer device.
16.4.1. Opening and closing subtimer

A subtimer must be opened before any operations can be performed on it using the driver. The number of sub-
timers hosted by atimer device can beread from the timer device configuration register usingt i mer _get _cf g.
A subtimer isopened usingti ner _sub_open and closed usingt i ner _sub_cl ose. The functions are de-
scribed below.

An opened subtimer can not be reopened unlessit is closed first. When opening a subtimer the subtimer is marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal _| dst ub
from the OSAL. Protection is used by all subtimers on opening and closing.

During opening of a subtimer witht i ner _sub_open the following steps are taken:

No register initialization is performed by t i mer _sub_open.
» Thedeviceis marked opened to protect the caller from other users of the same device.

Table 16.10. t i mer _sub_open function declaration

Proto |void *tiner_sub_open(struct tinmer_priv *priv, int sub_no)

About | Open a subtimer

Subtimer sub_no on device d is opened. No registers are affected. The returned valueisused asin-
put argument to all functions operating on the subtimer.

Param |pri v [IN] pointer
Device handlereturned by t i mer _open.

Param |sub_no [IN] Integer
Subtimer identification number.

Return |Pointer. Status or subtimer handle

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 139

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Value Description

NULL Indicates failure to open subtimer. Fails if subtimer is already open or index out of
range.

Others Subtimer handle to be used as input parameter to all other functions of the subtimer API.

Table 16.11.t i mer _sub_cl ose function declaration

Proto |int timer_sub_close(struct timer_priv *priv, int sub_no)

About |Close a subtimer

No hardware registers are affected.
Param |pri v [IN] pointer

Devicehandlereturned by t i ner _open.

Param |sub_no [IN] Integer
Subtimer identification number. Must be the same number asused inthecall tot i mer _sub_open
Return |int. Return code as indicated below.

Value Description
DRV_OK Success.
DRV_NOTOPEN Subtimer sub_no was not open.
Notes |A subtimer is closed by using the device handle and subtimer number. The subtimer handle is not in-
volved

16.4.2. Subtimer control

Thetimer driver exportsthe subtimer register spaceto the user by providing setter and getter functions. Full register
descriptions can be found in the component User's Manual.

The example below opens the second subtimer of the first timer device. Then it is started and then read.

int timer_exanple()

{
const int SUBNO = 1;
struct timer_priv *device;
voi d *sub;
int count;
uint32_t val;

count = timer_dev_count();
printf("%l tiner devices present\n", count);

device = tinmer_open(0);
if (NULL == device) {
return -1; /* Failure */

sub = timer_sub_open(device, SUBNO);

tinmer_set_rel oad(sub, Oxffff);
timer_set_ctrl(sub, GPTIMER CTRL_LD | GPTIMER CTRL_RS | GPTIMER CTRL_EN);

val = tiner_get_counter(sub);
printf("Counter value is %.\n", val);
val = tiner_get_counter(sub);

printf("Counter value is %.\n", val);

tinmer_set_ctrl(sub, 0);
timer_sub_cl ose(device, SUBNO) ;
tinmer_cl ose(device);

return 0; /* success */

}
Table 16.12. Subtimer getter function declarations

Proto uint32_ t tinmer_get _counter(void *s)
uint32_t timer_get rel oad(void *s)

uint32_t timer_get_ctrl(void *s)

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 140

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

uint32_t tinmer_get latch(void *s)

About | Get subtimer counter value register.
Get subtimer reload value register.
Get subtimer control register.

Gets subtimer latch register.

The functions returns the value of the corresponding subtimer register.

Param |s [IN] pointer
Subtimer handlereturned by t i mer _sub_open.
Return |uint32_t. Value read from register.

ti mer_get _count er returns subtimer counter value register.
ti mer _get rel oad returnssubtimer reload value register.

timer_get ctrl returnssubtimer control register. Register definitions for the subtimer control
register are available inthefilei ncl ude/ r egs/ gpti mer - r egs. h. Therelevant defines are
prefixed with GPTI MER_CTRL_.

ti mer_get | at ch returns subtimer latch register.

Table 16.13. Subtimer setter function declarations

Proto void timer_set_reload(void *s, uint32_t val ue)

void tinmer_set _ctrl(void *s, uint32_t val ue)
About | Set subtimer reload value register.

Set subtimer control register.

The function writes the corresponding subtimer register with val ue.

Param |s [IN] pointer

Subtimer handle returned by t i mer _sub_open.

Param |val ue [IN] uint32_t

Value to write to the corresponding register, according to the following:

Forti mer _set rel oad, the subtimer reload value register iswritten.

Forti mer _set _ctrl,thesubtimer control register iswritten. Register definitions for the sub-
timer control register are availableinthefilei ncl ude/ r egs/ gpti ner-r egs. h. The relevant
defines are prefixed with GPTI MER_CTRL _.

Return |None.

16.4.3. Watchdog support

Thetimer driver has support functionality for operating awatchdog subtimer. A watchdog subtimer is opened and
started as any other subtimer, and should always be programmed to generate interrupt on underflow.

i nt wat chdog_exanpl e()

{
const int WATCHDOG SUB = 3;

struct tinmer_priv *device;
voi d *wdsub;
device = tinmer_open(0);

if (NULL == device) {
return -1; /* Failure */

}
wdsub = tiner_sub_open(devi ce, WATCHDOG SUB) ;

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 141

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

/* Set watchdog tineout. */
timer_set_rel oad(wdsub, Oxffff);
timer_set_ctrl (wdsub, GPTIMER CTRL_IE);
/* Start watchdog by kicking it */
timer_ki ck(wdsub);

/* Kick the watchdog agai n*/
tinmer_ki ck(wdsub);

/* Tenporarily disable watchdog. */

timer_stop(wdsub);

/* Start it again by activating interrupt and kick it. */
timer_set_ctrl (wdsub, GPTIMER CTRL_IE);

timer_ki ck(wdsub);

[...]

puts("Restarting system using watchdog.");

wat chdog_system restart (wdsub);

/* We never return to here */

return -1;

}

Table 16.14. t i mer _st op function declaration

Proto |void tiner_stop(void *s)

About | Stop subtimer

The function stops a subtimer by clearing the control register (setting it to zero value). This function
can be used to temporarily stop the watchdog timer.

Param |s [IN] pointer
Subtimer handlereturned by t i mer _sub_open.

Return |None.

Table 16.15. t i mer _ki ck function declaration

Proto |void timer_kick(void *s)
About |Restart a subtimer

The function performs the following by updating the subtimer control register:
* Subtimer isloaded with value of the subtimer reload register.
* Subtimer is enabled.
* Interrupt pending state of subtimer is cleared.

The functionistypically used to kick awatchdog timer. Note that the interrupt enable (IE) bit isleft
unmodified by this function.

Param |s [IN] pointer
Subtimer handlereturned by t i mer _sub_open.

Return |None.

Table 16.16. wat chdog_syst em r est art function declaration

Proto |void wat chdog _systemrestart(void *s)

About |Restart system using watchdog

The system triggers the watchdog and enters an infinite loop.

Param |s [IN] pointer

Subtimer handle returned by t i mer _sub_open. This should be the subtimer handle for the watch-
dog timer.

Return |None.

Notes |The function never returns.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 142

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

16.5. Restrictions

The timer driver is designed to operate each opened GPTIMER/GRTIMER device in multiple tasks, with some
restrictions:
* One or more devices can be opened and operated on by one task.
* Any timer device or any subtimer of any device can be operated on by any task, but only the task which
opened the device may close the device and open/close its subtimers.

Thefollowing functions are allowed to be called from any task or from an ISR, provided that the associated timer
device or subtimer is open:

e tinmer_dev_count

e« tiner_set_scaler

e tiner_set _scal er_rel oad

e tiner_get cfg

e timer_set _cfg

e tiner_set _latch_cfg

e tinmer_get_counter

e« tiner_get _rel oad

e tiner_set rel oad

e tiner_get ctrl

e timer_set _ctrl

e tiner_get _latch

e timer_stop

« wat chdog_systemrestart

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 143

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

17. GPIO driver
17.1. Introduction
This section describes the driver used to control the GRGPIO devices available on component.

17.2. Driver registration
This driver uses the driver registration mechanism described in Chapter 10.

Table 17.1. Driver registration functions

Registration method Function

Automatic registration gpi o_autoinit()
Register one device gpi o_register ()
Register many devices gpio_init()

17.3. Opening and closing device

The driver operates on GRGPIO devices, which typically consists of multiple GPIO infout ports. The control
interface, Section 17.4, allows for setting and getting values for multiple ports at atime.

For GRGPIO devices implemented with interrupt map support, the interrupt map interface described in Sec-
tion 17.5 can be used.

A GRGPIO device must first be opened before any operations can be performed using the driver. The number of
devices registered to the driver can be retrieved using gpi o_dev_count . A particular device can be opened
using gpi o_open and closed gpi o_cl ose. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is
marked opened by the driver. The gpi o_open function is thread-safe by protecting from other threads by using
osal _| dst ub from the OSAL. Protection is used by all GRGPIO devices on opening.

During opening of a GRGPIO device the following steps are taken:
< All GPIO ports are configured as inputs and interrupts are disabled.

* Internal data structures areinitialized.
» Thedeviceis marked opened to protect the caller from other users of the same device.

Table 17.2. gpi o_dev_count function declaration

Proto |int gpio_dev_count (voi d)
About |Retrieve number of GRGPIO devices registered to the driver.
Return |int. Number of GRGPIO devices registered in system, zero if none.

Table 17.3. gpi 0_open function declaration

Proto |struct gpio_priv *gpio_open(int dev_no)

About |Opensa GRGPIO device. The GRGPIO deviceisidentified by index. The returned valueis used as
input argument to all functions operating on the device.

Param |dev_no [IN] Integer

Deviceidentification number. Must be equal or greater than zero, and smaller than that returned by
grgpi o_dev_count.

Return |Pointer. Status and driver'sinternal device identification.

NULL Indicates failure to open device. Failsif deviceis already open.

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, idenfifies which GRGPIO device.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 144

https://www.frontgrade.com/gaisler

rRONTGRADE

Table 17.4. gpi o_cl ose function declaration

Gaisler

Proto |int gpio_close(struct gpio_priv *priv)

abled.

About |Closes apreviously opened device. All ports are configured as inputs and GPIO interrupts are dis-

Param |pri v [IN] pointer
Deviceidentifier. Returned from gpi o_open.

Return |int. DRV_OK

17.4. Control interface

The GPIO driver exportsthe full GRGPIO register spaceto the user. Onefunction is defined per GRGPIO register.

Before enabling GPIO interrupt by configuring the interrupt mask register with the function gpi o_i nt nask,
the user must register an interrupt handler on the corresponding interrupt source. This can be done by calling the

functionbcc_i sr_register().

The example below opens the last GRGPIO device. Itsthird port signal is configured as output and driven high.

#i ncl ude <drv/gpio. h>
int gpi o_exanpl e(void)

struct gpio_priv *device;
int count;

count = gpi o_dev_count();
printf ("%l GRGPI O devices present\n", count);

devi ce = gpi o_open(count-1);
if (!device) {

return -1; /* Failure */
}

gpi o_di rection(device, 1, 1<<2);
gpi o_out put (device, 1, 1<<2);

/* Qutputs are disabl ed when the device is closed. */
gpi o_cl ose(device);
return 0; /* success */

}

Table 17.5. GPIO control function declarations

Proto uint32_t gpio_data(struct gpio_priv *priv)

val)

uint32 t gpio direction(struct gpio _priv *priv, int set,

newal)

newal)

val)

newal)

newal)

val)

uint32_t gpio_out put(struct gpio_priv *priv, int set, uint32_t new

uint32 t gpio_intmask(struct gpio_priv *priv, int set, uint32_t

uint32_t gpio_intpol (struct gpio_priv *priv, int set, uint32_t new

uint32 t gpio_intedge(struct gpio_priv *priv, int set, uint32_t

uint32_t gpio_intflag(struct gpio_priv *priv, int set, uint32_t

uint32_t gpio_pul se(struct gpio_priv *priv, int set, uint32_t new

uint32_t

About |Get I/O port dataregister.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 145

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Get/set I/O port output register.
Get/set 1/0 port direction register.
Get/set interrupt mask register.
Get/set interrupt polarity register.
Get/set interrupt edge register.
Get/set interrupt flag register.
Get/set pulse register.

The functions return and optionally set the value of the corresponding GRGPIO register. If set is0
then nothing will be written to the register, else the register is set to the value of the newal param-
eter.

Param |pri v [IN] pointer
Deviceidentifier. Returned from gpi o_open.

Param |set [IN] Integer
Determines if register shall be updated.
0 Do not write register.

1 Write value of newval to register.

Return |uint32_t. Theregister content (before newval valueiswritten).

The easiest way to write and read GPIO isto usethegpi o_write() andgpi o_r ead() functions.

Table 17.6. gpi o_wri t e function declaration

Proto |static inline int gpio wite(struct gpio_priv *priv, uint32_t val)
About | Write GPIO output register
Param |pri v [IN] pointer

Device handle returned by gpi o_open.
Param |val [OUT] uint32_t

Value to write to output register.

Return |int. DRV_OK

Table 17.7. gpi o_r ead function declaration

Proto |static inline uint32_t gpio_read(struct gpio_priv *priv)
About |Read GPIO data register

Param |pri v [IN] pointer

Device handle returned by gpi o_open.

Return |uint32_t. Valueread from GPIO dataregister.

17.4.1. Logical bit operations

The functions described in Table 17.8 perform atomic set/get operations on the GPIO registers. It allows different
tasks to independently set and clear individual bits in the output, direction and interrupt mask registers.

Table 17.8. GPIO logical function declarations

Proto int gpio_output_or(struct gpio _priv *priv, uint32_t nask)
int gpio_output_and(struct gpio_priv *priv, uint32_t mask)

int gpio_direction_or(struct gpio_priv *priv, uint32_t mask)

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 146

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
int gpio_direction_and(struct gpio_priv *priv, uint32_t mask)
int gpio_intmask_or(struct gpio_priv *priv, uint32_t mask)

int gpio_intmask_and(struct gpio_priv *priv, uint32_t mask)

About |Logical or/and I/O port output/direction/interrupt mask register.

These functions perform alogical operation on the corresponding GRGPIO register.
* The _or functions perform logical OR with the user mask parameter.
» The_and functions perform logical AND with the user mask parameter.

These functionsareimplemented asst at i ¢ i nl i ne functions.

Param |pri v [IN] pointer

Deviceidentifier. Returned from gpi o_open.
Param |mask [IN] uint32_t

User mask for the logical operation.

Return |int. DRV_OK

17.5. Interrupt map interface

The function gpi 0_get i nterrupt _nunber () can be used with al versions and configurations of the
GRGPIO.

Table 17.9. gpi 0_get _i nterrupt _nunber function declaration

Proto |int gpio_get interrupt_nunber(struct gpio_priv *priv, int gpiobit)
About | Get absolute interrupt line number for GRGPIO bit. This function can be used with all versions of the
GRGPIO, and takes the following items into consideration:

* GRGPIO version

* | RQGEN capability

 Current GRGPIO interrupt map configuration

* AMBA Plug&Play interrupt number

Param |pri v [IN] pointer
Device handle returned by gpi o_open.

Param |gpi obi t [IN] Integer
GRGPIO hit number
Return |int. Interrupt line for GRGPIO bit gpi obi t .

The following functions can be used if interrupt map is enabled in the GRPGIO.

Table 17.10. gpi o_i nt map_set function declaration

Proto |int gpio_intnmap_set(struct gpio _priv *priv, int gpiobit, int intli-
neof f set)

About | Configure GRGPIO bit gpi obi t to generate interrupt on interrupt line offseti nt | i neof f set .
The absolute interrupt line number is the offset plus the base interrupt line number of the GRGPIO
controller.

Param |pri v [IN] pointer
Device handle returned by gpi o_open.

Param |gpi obi t [IN] Integer
GRGPI O bit number
Param |i nt|i neof fset [IN] Integer

Interrupt line offset.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 147

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Return |int. DRV_OK
Notes |Thisfunction assumes that the user parameters are valid.

Table17.11. gpi o_i nt map_get function declaration

Proto |int gpio_intmap_get(struct gpio_priv *priv, int gpiobit)

About | Get interrupt line for GRGPIO bit. The absolute interrupt line number is the returned offset plus the
base interrupt line number of the GRGPIO controller.

Param |pri v [IN] pointer
Device handle returned by gpi o_open.

Param |gpi obi t [IN] Integer

GRGPIO bit number

Return |int. Interrupt line offset for GRGPIO bit gpi obi t .
Notes |Thisfunction assumes that the user parameters are valid.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 148

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

18. AHB Status Register driver

18.1. Introduction

This section describes the driver used to control the AHBSTAT device, commonly known as the AHB status
register.

18.2. Driver registration
This driver uses the driver registration mechanism described in Chapter 10.

Table 18.1. Driver registration functions

Registration method Function

Automatic registration ahbstat _autoinit()
Register one device ahbstat register()
Register many devices ahbstat _init()

18.3. Opening and closing device

An AHBSTAT device must first be opened before any operations can be performed using the driver. The number
of devices registered to the driver can be retrieved using ahbst at _dev_count . A particular device can be
opened using ahbst at _open and closed ahbst at _cl ose. The functions are described below.

When opened, the device can not be reopened unlessthe deviceisclosed first. When opening the deviceit ismarked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal _| dst ub
from the OSAL. Protection is used by the AHBSTAT device on opening and closing.

During opening of an AHBSTAT device the following steps are taken:
* AHB statusregister isinitialized to start monitoring AMBA AHB bus transactions and correctable errors.
¢ Internal data structures are initialized.
e Thedeviceis marked opened to protect the caller from other users of the device.

Table 18.2. ahbst at _dev_count function declaration

Proto |i nt ahbstat _dev_count (voi d)
About |Retrieve number of AHBSTAT devices registered to the driver.
Return |int. Number of AHBSTAT devicesregistered to driver, zero if none.

Table 18.3. ahbst at _open function declaration

Proto |struct ahbstat priv *ahbstat _open(int dev_no)

About |Opensan AHBSTAT device. The AHBSTAT deviceisidentified by index. The returned value is used
asinput argument to all functions operating on the device.

Param |dev_no [IN] Integer

Deviceidentification number. Devices are indexed by the order registered to the driver. Must be equal
or greater than zero, and smaller than that returned by ahbst at _dev_count .

Return |Pointer. Status and driver'sinternal device identification.

NULL Indicates failure to open device. Failsif deviceis already open, or invalid dev_no pa-
rameter.

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, idenfifiesthe AHBSTAT device.

Notes |The AHBSTAT ISRisnotinstalled by ahbst at _open.

Table 18.4. ahbst at _cl ose function declaration

‘Proto ‘i nt ahbstat cl ose(struct ahbstat _priv *d)

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 149

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

About |Closes a previously opened device.

If the AHB statu register interrupt service routine has been installed, it will be uninstalled by the close
operation.

Param |d [IN] pointer

Device handle returned by ahbst at _open.

Return |int.
Value Description
DRV_OK |Successfully closed device.
others Device closed, but failed to unregister interrupt handler.

18.4. Register interface

The AHB status registers base address can beretrieved using theahbst at _get _r egs function. Registers and
bit definitions are provided in the C header file dr v/ r egs/ ahbst at . h. Individual bits are described in the
GRLIB IP Core User's Manua (GRIP).

Table 18.5. ahbst at _get _r egs function declaration

Proto |volatile struct ahbstat regs *ahbstat get regs(struct ahbstat priv
*d)
About |Get AHBSTAT registers base address

Register definitions for AHBSTAT are provided by the header filedr v/ r egs/ ahbst at . h.
Param |d [IN] pointer

Device handle returned by ahbst at _open.

Return |Pointer. Address of AHBSTAT register area.

18.5. Interrupt service routine

An interrupt service routine is provided by the driver which is installed by calling the driver function
ahbst at _set user. The user can provide a callback function which is called by the interrupt routine, using
function. When a user callback is installed, the drivers interrupt routine will re-enable bus monitoring only if
the user callback returns 0. If the user callback returns a value other than 0O, then the callback itself should re-
enable AHBSTAT monitoring by clearing the NE hit. The callback is called with a custom argument as selected
by ahbst at _set user.

The example below defines and enables an ISR callback which rewrites the failing location in case of correctable
error.

#i ncl ude <drv/ahbstat.h>
#i nclude <drv/regs/ahbstat.h>

vol atile int user_ncerr = 0;

int user(
vol atile struct ahbstat_regs *regs,
uint32_t status,
uint32_t failing_address,
voi d *userdata

if (!(status & AHBSTAT_STS CE)) {
/* Not correctable so this callback can't handle it. */
return O;

int *ncerr;
ncerr = (int *) userdata;
(*ncerr) ++;

volatile uint32_t *data = (volatile uint32_t *) failing_address;
uint32_t tnp;
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 150

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

/* Read and wite back */
tnmp = *data;
*data = tnp;

/* Reenabl e AHBSTAT probing */
regs->status = 0;

/* Returns 1 to prevent driver ISR to reenabl e AHBSTAT probing */
return 1;

}

int user_exanpl e(voi d)

{
const int DEVNO = 0;
struct ahbstat_priv *devi ce;
int ret;

devi ce = ahbstat _open(DEVNO);
if (NULL == device) {
return -1; /* Failure */

}

ret = ahbstat_set_user(device, user, (void *) &user_ncerr);
if (DRV.OK !=ret) {
return -2; /* Failure */

}

/* Force correctable errors etc... */

[...]

printf("Nunber of correctable errors detected and corrected: %l\n", user_ncerr);
ret = ahbstat_cl ose(device);

if (DRV.OK I=ret) {

return -3; /* Failure */

return 0; /* success */

}

Table 18.6. ahbst at _set _user function declaration

Proto |int ahbstat_ set user(struct ahbstat _priv *d, int (*userhan-
dler)(volatile struct ahbstat regs *regs, uint32_t status, uint32_t
failing address, void *userarg), void *userarg)

About |Install the AHBSTAT ISR and set | SR user callback function.

Theuser handl er parameter isthe user callback function to be called from the AHBSTAT ISR.
The callback is called by the AHBSTAT ISR only if the has checked that the NE status bit is 1.

Only one callback can be registered at atime. A second call to ahbst at _set _user replacesthe
previously registered callback.

If user handl er isNULL, thenthe AHBSTAT ISR isuninstalled.
Parameter r egs of the callback isthe register base address of the AHBSTAT core.

Parameter st at us of the callback is an unmodified copy of the AHBSTAT status register at entry to
driversinterrupt routine.

Thefai |l i ng_addr ess parameter of the callback is a copy of the AHBSTAT failing address regis-
ter at entry to the interrupt routine.

If the callback returns O, then the driver interrupt routine will reenable AHBSTAT by clearing the sta-
tus register. Otherwise the status register is not touched by the interrupt routine after callback returns.
Theuser ar g parameter is passed to the user callback user handl er . It may be NULL.

Param |d [IN] pointer

Device handlereturned by ahbst at _open.

Param |user handl er [IN] pointer

User callback function as described above. If user handl er isNULL then the callback is unin-
stalled, but the AHBSTAT ISR is still active.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 151

https://www.frontgrade.com/gaisler

Param

rRONTGRADE

Gaisler

user dat a [IN] pointer
Datato passto the user callback. It may be NULL.

Return

int. DRV_OK on success, else = DRV_OK if ISR ingtall failed.

Notes

The AHBSTAT ISR can not be uninstalled once installed. However, the user handler can be disabled
by calling ahbst at _set user withuser handl er setto NULL.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 152

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

19. Clock gating unit driver

19.1. Introduction

This section describes the driver used to control the GRLIB clock gating unit, also known as CLKGATE or GR-
CLKGATE.

19.2. Driver registration
This driver uses the driver registration mechanism described in Chapter 10.

Table 19.1. Driver registration functions

Registration method Function

Automatic registration cl kgate_autoinit()
Register one device cl kgate_register()
Register many devices clkgate_ init()

19.3. Opening and closing device

An device must first be opened before any operations can be performed using the driver. The number of devices
registered to the driver can be retrieved using ¢l kgat e_dev_count . A particular device can be opened using
cl kgat e_open and closed cl kgat e_cl ose. The functions are described below.

When opened, the device can not be reopened unlessthe deviceisclosed first. When opening the deviceit ismarked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal _| dst ub
from the OSAL. Protection is used by the AHBSTAT device on opening and closing.

During opening of an AHBSTAT device the following steps are taken:
* AHB statusregister isinitialized to start monitoring AMBA AHB bus transactions and correctable errors.

 Interna data structures are initialized.
e Thedeviceis marked opened to protect the caller from other users of the device.

Table 19.2. cl kgat e_dev_count function declaration

Proto |int cl kgate_dev_count (voi d)
About |Retrieve number of clock gating devices registered to the driver.

Return |int. Number of devices registered to driver, zero if none.

Table 19.3. cl kgat e_open function declaration

Proto |[struct clkgate_priv *cl kgate_open(int dev_no)

About | Opens an clock gating unit device, identified by index. The returned value is used as input argument
to all functions operating on the device.

This function does not change any device state.

Param |dev_no [IN] Integer

Deviceidentification number. Devices are indexed by the order registered to the driver. Must be equal
or greater than zero, and smaller than that returned by cl kgat e_dev_count .

Return |Pointer. Status and driver'sinternal device identification.
NULL Indicates failure to open device. Failsif deviceis already open, or invalid dev_no pa-
rameter.

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, idenfifiesthe AHBSTAT device.

Table 19.4. cl kgat e_cl ose function declaration

‘Proto ‘i nt cl kgate_cl ose(struct clkgate priv *d)

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 153

https://www.frontgrade.com/gaisler

About

rRONTGRADE

Gaisler

Closes a previously opened device.

This function does not change any device state.

Param

d [IN] pointer
Device handle returned by cl kgat e_open.

Return

int.
Value Description

DRV_OK |Successfully closed device.

others Device closed, but failed to unregister interrupt handler.

19.4. Operation

Each core supported by the clock gating unit can be individualy clock gated or enabled by the function
cl kgat e_gat e andcl kgat e_enabl e. The sequences performed by these functions are identical to the gate
and enabl e procedures described in component User's Manual, Clock Gating Unit section.

Core to bit mappings are defined in the C header filedr v/ r egs/ cl kgat e_bi t s. h with names prefixed by
CLKGATE_<conponent >_. Any number of the defines can be use (OR:ed) together when calling the driver
functions.

A corewhichisenabled with cl kgat e_enabl e will also be reset.

The driver does not arbitrate for the device. Protecting the driver from concurrent calls can be done on application
level if needed.

The example below, applicable to GR740, gates all cores and then enables the SpaceWire subsystem and the
second GRETH core.

#i ncl ude <drv/cl kgate. h>

int clkgate_exanpl e(struct clkgate_priv *d)

{

int ret;

/* Gate all cores. */
ret = clkgate_gate(d, CLKGATE GR740_ALL);
if (DRV.OK !I'=ret) {

return ret;

}

/* Enabl e and reset SpaceWre, GRETHL */
ret = cl kgate_enabl e(d, CLKGATE_GR740_GRSPW2 | CLKGATE_GR740_GRETH);
if (DRV.OK !I'=ret) {

return ret;

}

return 0; /* success */

}

Table 19.5. cl kgat e_gat e function declaration

Proto

int clkgate_gate(struct clkgate_priv *d, uint32_t corenmask)

About

Gate the clock for selected cores.

Coresto gate are selected with the cor emask parameter with values CLKGATE_* as de-
fined inthefilei ncl ude/ cl kgat e. h. Multiple cores can be gated at the same time by
OR:ing these values together. To gate all component cores supporting clock gating, the mask
CLKGATE_<conponent >_ALL can be used.

The coresidentified as cor emask will be held in reset with its input clock disabled.

Param

d [IN] pointer
Device handlereturned by cl kgat e_open.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 154

https://www.frontgrade.com/gaisler

rRONTGRADE
Gaisler
Param |cor ermask [IN] uint32_t
Bitmask representing the cores to operate on. (Values are CLKGATE_*.)
Return |int. DRV_OK

Table 19.6. cl kgat e_enabl e function declaration

Proto |int clkgate_ enabl e(struct clkgate priv *d, uint32_t corenmask)
About |Enablethe clock and reset selected cores.

Cores to enable are selected with the cor emask parameter with values CLKGATE_* asdefined in
thefilei ncl ude/ cl kgat e. h. Multiple cores can be enabled at the same time by OR:ing these
values together.

Param |d [IN] pointer

Device handle returned by cl kgat e_open.

Param |cor emask [IN] uint32_t

Bitmask representing the coresto operate on. (Values are CLKGATE_*.)
Return |int. DRV_OK

19.5. Core reset

A core can bereset by caling cl kgat e_gat e() followed by cl kgat e_enabl e() with the same cor e-
mask parameter. For example:

voi d cl kgate_reset(struct clkgate_priv *priv, uint32_t corenask)

{
cl kgate_gate(priv, coremask);
cl kgat e_enabl e(priv, coremask);

}
19.6. Probe clock gating status

A function is available to read the current state of the clock gating unit registers. It providesthe caller with infor-
mation on which cores are gated and which are enabled.

Table19.7. cl kgat e_st at us function declaration

Proto |int clkgate status(struct clkgate priv *d, uint32_t *enabl ed,
uint32_t *di sabl ed)

About |Get enable status of cores

The function determines enabled and disbled state by reading the clock gating unit registers.
Param |d [IN] pointer

Deviceidentifier. Returned from cl kgat e_open.

Param |enabl ed [IN] Pointer

Output mask of cores which are enabled.

Param |di sabl ed [IN] Pointer

Output mask of cores which are disabled.

Return |uint32_t. The register content (before newval value iswritten).

19.7. CPU override

The driver provides an interface to control the clock gating unit CPU/FPU override register, available in some
implementations.

Table 19.8. cl kgat e_overri de function declaration

Proto |uint32_t clkgate override(struct clkgate priv *d, int set, uint32_t
newal)

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 155

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

About | Get/set CPU/FPU override register

The function returns and optionally sets the value of the register. If set is 0 then nothing will be writ-
ten to theregister, else the register is set to the value of the newval parameter.

Param |d [IN] pointer
Deviceidentifier. Returned from cl kgat e_open.

Param |set [IN] Integer
Determinesiif register shall be updated with newval .

0 Do not write register.

1 Write value of newval toregister.

Param |newval [IN] Integer
New value

Return |uint32_t. The register content (before newval valueiswritten).

Notes |The CPU/FPU override functionality is not available in all implementations. See the component
datasheet for more information.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 156

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

20. GR1553B Driver

20.1. Introduction

This document describes the BCC drivers specific to the GRLIB GR1553B core. The Remote Terminal (RT), Bus
Monitor (BM and Bus Controller (BC) functionality are supported by the driver. Device discovery and resource
sharing are commonly controlled by the GR1553B driver described in this chapter. Each 1553 mode is supported
by a separate driver, the drivers are documented in separate chapters.

This section gives an brief introduction to the GRLIB GR1553B device allocation driver used internally by the
BC, BM and RT devicedrivers. Thisdriver controls the GR1553B device regardless of interfaces supported (BC,
RT and/or BM). The device can be located at an on-chip AMBA or an AMBA-over-PCl bus. The driver provides
aninterface for the BC, RT and BM drivers.

Since the different interfaces (BC, BM and RT) are accessed from the same register interface on one core, the
APB device must be shared among the BC, BM and RT drivers. The GR1553B driver provides an easy function
interface that allows the APB device to be shared safely between the BC, BM and RT device drivers.

Any combination of interface functionality is supported, but the RT and BC functionality cannot be used simul-
taneoudly (limited by hardware).

Theinterfacetowardsto the BC, BM and RT driversisused internally by the device driversand is not documented
here. See respective driver for an interface description.

20.1.1. Considerations and limitations

Note that the following items must be taken into consideration when using the GR1553B drivers:

e The driver uses only Physical addressing, i.e it does not do MMU translation or memory mapping for the
user. The user is responsible for mapping DMA memory buffers provided to the 1553 drivers 1:1.

e Physical buffers addresses (assigned by user) must be located at non-cacheable areas or D-Cache
snooping must be present in hardware. If D-cache snooping is not present the user must edit the
GR1553*_READ_MEM() macrosin respective driver.

¢ SMP locking (spin-locks) has not been implemented, it does however not mean that SMP mode can not be
used. The CPU handling the IRQ (CPUOQ unless configured otherwise) must be the CPU and only CPU using
the driver API. Only one CPU can use respective driver API at atime.

The above restrictions should not cause any problems for the AT697 + GR-RASTA-IO (RASTA-101) systems
or similar.

20.1.2. GR1553B Hardware

The GRLIB GR1553B core may support up to three modes depending on configuration, Bus Controller (BC),
Remote Terminal (RT) or Bus Monitor (BM). The BC and RT functionality may not be used simultaneously, but
the BM may be used together with BC or RT or separately. All three modes are supported by the driver.

Interrupts generated from BC, BM and RT result in the same system interrupt, interrupts are shared.
20.1.3. Software driver

The driver provides an interface used internally by the BC, BM and RT device drivers, see respective driver for
an interface declaration. The driver sources and definitions are listed in the table below, the path is given relative
to the toolchains root directory.

Table 20.1. Source Location

Filename Description
src/libdrv/src/gr1553b/gris53h.c GR1553B Driver source
src/libdrv/src/include/gr1553b.h GR1553B Driver interface declaration

20.1.4. Driver Registration

This driver uses the driver registration mechanism described in Chapter 10.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 157

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 20.2. Driver registration functions

Registration method Function

Automatic registration gr 1553b_aut oi nit ()
Register one device gr 1553b_regi ster ()
Register many devices gr1553b_init()

The registration of the driver is crucial for the user to be able to access the driver application programming inter-
faces. The drivers use aclassic C-language API.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 158

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

21. GR1553B Bus Controller Driver

21.1. Introduction

This section describes the GRLIB GR1553B Bus Controller (BC) device driver interface. The driver relies on the
GR1553B driver. The reader is assumed to be well acquainted with MIL-STD-1553 and the GR1553B core.

21.1.1. GR1553B Bus Controller Hardware

The GR1553B core supportsany combination of the Bus Controller (BC), BusMonitor (BM) and Remote Terminal
(RT) functionality. This driver supports the BC functionality of the hardware, it can be used simultaneously with
the Bus Monitor (BM) functionality. When the BM is used together with the BC, interrupts are shared between
thedrivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through separate registers.
In order to share hardware resources between the three GR1553B drivers, the three depends on a lower level
GR1553B driver, see Chapter 20.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.
21.1.2. Software driver

The BC driver is split in two parts, one where the driver access the hardware device and one part where the
descriptors are managed. The two parts are described in two separate sections below.

Transfer and conditional descriptors are collected into a descriptor list. A descriptor list consists of a set of Major
Frames, which consist of a set of Minor Frames which in turn consists of up to 32 descriptors (also called Slots).
The composition of Major/Minor Framesand slotsisconfigured by theuser, and ishighly dependent of application.

The Major/Minor/Slot construction can be seen as a tree, the tree does not have to be symmetricaly, i.e. Major
frames may contain different numbers of Minor Frames and Minor Frames may contain different numbers of Slot.

GR1553B BC descriptor lists are generated by the list APl availableingr 1553bc_1i st. h.

The driver provides the following services:
» Start, Stop, Pause and Resume descriptor list execution
 Synchronous and asynchronous descriptor list management
¢ Interrupt handling
* BC status
e Magjor/Minor Frame and Slot (descriptor) model of communication
e Current Descriptor (Major/Minor/Slot) Execution Indication
» Software External Trigger generation, used mainly for debugging or custom time synchronization
e Major/Minor Frame and Slot/Message ID
¢ Minor Frame time slot management

The driver sources and definitions are listed in the table bel ow, the path is given relative to the BCC toolchain.

Table 21.1. BC driver Source location

Filename Description

src/libdrv/src/gr1553b/gr1553bce.c GR1553B BC Driver source
src/libdrv/src/include/gri553bce.h GR1553B BC Driver interface declaration
src/libdrv/src/include/gris53be_list.h GR1553B BC List handling interface declaration

21.1.3. Driver registration

The driver registration is handled by the GR1553B driver, see Chapter 20.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 159

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

21.2. BC Device Handling

The BC device driver's main purpose is to start, stop, pause and resume the execution of descriptor lists. Lists are
described in the Descriptor List section. In this section services related to direct access of BC hardware registers
and Interrupt are described. The function API isdeclared in gr 1553bc. h.

21.2.1. Device API

The device API consists of the functions in the table below.

Table 21.2. Device API function prototypes

Prototype Description
void *gr1553bc_open(int mnor) Open aBC device by minor number. Private handle re-
turned used in all other device API functions.
voi d gr1553bc_cl ose(voi d *bc) Clow apranous Opened BC dence
int gri553bc_start(void *bc, Schedule a synchronous and/or a asynchronous BC
struct gr1553bc_list *list, . K . . .
struct gr1553bc_list *list async) descriptor Lists for execution. Thiswill unmask BC

interrupts and start executing the first descriptor in
respective List. This function can be called multiple

times.
int gr1553bc_pause(void *bc) Pause the synchronous List execution.
int gri553bc_restart(void *bc) Restart the synchronous List execution.
int gri1553bc_stop(void *bc, int options) Stop Synchronous and/or asynchronous list.
int th15§3bg)_i ndi cation(void *be, int async, Get the current BC hardware execution position (MID)
n m .
of the synchronous or asynchronous list.
voi d gr1553bc_stat us(void *bc, Get the BC hardware status and time.
struct gr1553bc_status *status)
void gr1553bc_ext_trig(void *bc, int trig) Trigger an externa trigger by writing to the BC action
register.
int gri1553bc_irq_setup(void *bc, Generic interrupt handler configuration. Handler will

bci f tf , id *dat .o .
ctratune_t tune, vol) be called in interrupt context on errors and interrupts

generated by transfer descriptors.

21.2.1.1. Data Structures

The gr1553bc_status data structure contains the BC hardware status sampled by the function
gr 1553bc_status().

struct gr1553bc_status {
unsigned int status;
unsigned int tinmne;

b

Table 21.3. gr1553bc_status member descriptions

M ember Description
status BC status register
time BC Timer register

21.2.1.2. gr1553bc_open

OpensaGR1553B BC device by deviceinstanceindex. Theminor number relatesto the order in which aGR1553B
BC deviceisfound in the Plug& Play information. A GR1553B core which lacks BC functionality does not affect
the minor number.

If a BC device is successfully opened a pointer is returned. The pointer is used internally by the GR1553B BC
driver, it is used asthe input parameter bc to al other device API functions.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 160

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

If the driver failed to open the device, NULL is returned.
21.2.1.3. gr1553bc_close

Closes a previously opened BC device. This action will stop the BC hardware from processing descriptorg/lists,
disable BC interrupts, and free dynamically memory allocated by the driver.

21.2.1.4. gr1553bc_start
Calling this function starts the BC execution of the synchronous list and/or the asynchronouslist. At least onelist
pointer must be non-zero to affect BC operation. The BC communication is enabled depends on list, and Interrupts

are enabled.

This function can be caled multiple times. If alist (of the same type) is already executing it will be replaced
with the new list.

21.2.1.5. gr1553bc_pause
Pause the synchronous list. It may be resumed by gr 1553bc_r esune() . See hardware documentation.
21.2.1.6. gr1553bc_resume

Resume the synchronous list, must have been previously paused by gr 1553bc_pause() . See hardware doc-
umentation.

21.2.1.7. gr1553bc_stop

Stop synchronous and/or asynchronous list execution. The second argument is a 2-bit bit-mask which determines
the lists to stop, see table below for a description.

Table 21.4. gr1553bc_stop second argument

Member Description
Bit 0 Set to one to stop the synchronous list.
Bit 1 Set to one to stop the asynchronous list.

21.2.1.8. gr1553bc_indication

Retrieves the current Mgjor/Minor/Slot (MID) position executing into the location indicated by mi d. The async
argument determines which type of list is queried, the Synchronous (async=0) list or the Asynchronous
(async=1).

Note that since the List API internally adds descriptors the indication may seem to be out of bounds.

21.2.1.9. gr1553bc_status

This function retrieves the current BC hardware status. Second argument determine where the hardware status
is stored, the layout of the data stored follows the gr 1553bc_st at us data structure. The data structure is
described in Table 21.3.

21.2.1.10. gr1553bc_ext_trig

The BC supports an external trigger signal input which can be used to synchronize 1553 transfers. If used, the
external trigger isnormally generated by somekind of TimeMaster. A message slot may be programmed to wait for
an external trigger before being executed, this feature allows the user to accurate send time synchronize messages
to RTs. However, during debugging or when software needs to control the time synchronization behaviour the

external trigger pulse can be generated from the BC core itself by writing the BC Action register.

This function sets the external trigger memory to one by writing the BC action register.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 161

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

21.2.1.11. gr1553bc_irg_setup

Install ageneric handler for BC deviceinterrupts. The handler will be called on Errors (DMA errors etc.) resulting
in interrupts or transfer descriptors resulting in interrupts. The handler is not called when an IRQ is generated by
a condition descriptor. Condition descriptors have their own custom handler.

Condition descriptors are inserted into the list by user, each condition may have a custom function and data as-
signed to it, see gr 1553bc_sl ot _i rg_prepar e() . Interrupts generated by condition descriptors are not
handled by this function.

The third argument is custom data which will be given to the handler on interrupt.

21.3. Descriptor List Handling

TheBC devicedriver can schedule synchronous and asynchronouslists of descriptors. Thelist containsadescriptor
table and a software description to make certain operations possible, for example transate descriptor address into
descriptor number (MID).

The BC stops execution of alist when a END-OF-LIST (EOL) marker isfound. Lists may be configured to jump
to the start of the list (the first descriptor) by inserting an unconditional jump descriptor. Once a descriptor list is
setup the hardware may process the list without the need of software intervention. Time distribution may also be
handled completely in hardware, by setting the "Wait for External Trigger” flag in a transfer descriptor the BC
will wait until the external trigger is received or proceed directly if already received. See hardware manual.

21.3.1. Overview

This section describes the Descriptor List Application Programming Interface (API). It provides functionality to
create and manage BC descriptor lists.

A listisbuilt up by the following building blocks:

* Major Frame (Consists of N Minor Frames)
e Minor Frame (Consists of up to 32 1553 Slots)
« Slot (Transfer/Condition BC descriptor), also called Message Slot

Theuser can configurelistswith different number of Major Frames, Minor Framesand slotswithin aMinor Frame.
The List manages a strait descriptor table and a Major/Minor/Slot tree in order to easily find it's way through all
descriptor created.

Each Minor frame consist of up to 32 slot and two extra slots for time management and descriptor find operations,
see figure below. In the figure there are three Minor frames with three different number of slots 32, 8 and 4. The
List manage time slot alocation per Minor frame, for example a minor frame may be programmed to take 8ms
and when the user alocate a message slot within that Minor frame the time specified will be subtracted from the
8ms, and when the message slot is freed the time will be returned to the Minor frame again.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 162

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Major 2 0|1 sLoT 31 -:' d
Minor 7 o Im |)
270 | 274 MID a1 | E E/
Major 3 (0 1 sLOT 7 | l.j
Minor0O ~ | YRRY)
3,00 | 301 MID 307 E F:/
MEIJOI' 3 (r 0 1 sLOT 3 | l.j
Minor1 % | | . YRRY
310 | 311 MID a1a| E P

Figure 21.1. Three consecutive Minor Frames

A specific Slot [Major, Minor, Slot] isidentified using aMID (Message-ID). The MID consist of three numbers
Major Frame number, Minor Frame number and Slot Number. The MID is a way for the user to avoid using
descriptor pointers to talk with the list API. For example a condition Slot that should jump to a message Slot can
be created by knowing "MID and Jump-To-MID". When allocating a Slot (with or without time) in a List the user
may specify acertain Slot or aMinor frame, when aMinor frameis given then the APl will find thefirst free Slot
as early in the Minor Frame as possible and return it to the user.

A MID can aso be used to identify a certain Major Frame by setting the Minor Frame and Slot number to Oxff.
A Minor Frame can be identified by setting Slot Number to Oxff.

A MID can be created using the macrosin the table below.

Table 21.5. Macros for creating MID

MACRO Name Description
GR1553BC_ID(major,minor,slot) ID of aSLOT
GR1553BC_MINOR_ID(mgjor,minor) ID of aMINOR (Slot=0xff)
GR1553BC_MAJOR_ID(major) ID of aMajor (Minor=0xff,Slot=0xff)

21.3.2. Example: steps for creating a list

Thetypical approach when creating lists and executing it:
e gris53bc _list_alloc(&list, MAJOR_CNT)
e gr1553bc list config(list, &listcfg)
¢ Create all Major Frames and Minor frame, for each major frame:
1. gr1553bc_major_alloc_skel(&major, &major_minor_cfg)
2. gr1553bc_list_set_major(list, &major, MAJOR_NUM)
 Link last and first Major Frames together:
1. gr1553bc list set major(&major7, & major0)
e gr1553bc list table aloc() (Allocate Descriptor Table)
» gr1553bc list_table build() (Build Descriptor Table from Majors/Minors)
 Allocate and initialize Descriptors predefined before starting:

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 163

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

1. gr1553bc_dot_aloc(list, &MID, TIME_REQUIRED, ..)
2. gr1553bc _dot_transfer(MID, ..)
e« START BCHARDWARE BY SCHEDULING ABOVE LIST
» Application operate on executing List

21.3.3. Major Frame

Consists of multiple Minor frames. A Major frame may be connected/linked with another Major frame, this will
result in a Jump Slot from last Minor frame in the first Mgjor to the first Minor in the second Magjor.

21.3.4. Minor Frame

Consists of up to 32 Message Slots. The services available for Minor Frames are Time-Management and Slot
allocation.

Time-Management is optional and can be enabled per Minor frame. A Minor frame can be assigned atime in
microseconds. The BC will not continue to the next Minor frame until the time specified has passed, the time
includesthe 1553 bustransfers. Seethe BC hardware documentation. Timeis managed by adding an extra Dummy
Message Slot with the time assigned to the Minor Frame. Every time a message Slot is allocated (with a certain
time: Slot-Time) the Slot-Time will be subtracted from the assigned time of the Minor Frame's Dummy Message
Slot. Thus, the sum of the Message Slotswill always sum up to the assigned time of the Minor Frame, as configured
by the user. When a Message Slot is freed, the Dummy Message Slot's Slot-Time is incremented with the freed
Slot-Time. Seefigure below for an example where 6 Message Slots has been allocated Slot-Timeinal ms Time-
Managed Minor Frame. Note that in the example the Slot-Time for Slot 2 is set to zero in order for Slot 3 to
execute directly after Slot 2.

Major 3 0|12 |3|4|5|6|7| TIME | J
Minor O ,.ljl
200 60 0 220 120 free 120 free DUMMY
us us us us us Ous us Ous 280us P

Figure 21.2. Time-Managed Minor Frame of 1ms
Thetotal time of al Minor Framesin aMajor Frame determines how long time the Mg or Frame isto be executed.

Slot allocation can be performed in two ways. A Message Slot can be allocated by identifying a specific free Slot
(MID identifiesa Slot) or by letting the API allocate thefirst free Slot in the Minor Frame (MID identifiesaMinor
Frame by setting Slot-1D to 0xff).

21.3.5. Slot (Descriptor)

The GR1553B BC core supports two Slot (Descriptor) Types.

« Transfer descriptor (also called Message Slot)
« Condition descriptor (Jump, unconditional-IRQ)

See the hardware manual for a detail description of a descriptor (Slot).

The BC Core is unaware of lists, it steps through executing each descriptor as the encountered, in a sequential
order. Conditions resulting in jumps gives the user the ability to create more complex arrangements of buffer
descriptors (BD) which is called lists here.

Transfer Descriptors (TBD) may have atime ot assigned, the BC core will wait until the time has expired before
executing the next descriptor. Time slots are managed by Minor frames in the list. See Minor Frame section. A
Message Slot generating a data transmission on the 1553 bus must have avalid data pointer, pointing to alocation
from which the BC will read or write data.

A Slotisallocatedusingthegr 1553bc_sl ot _al | oc() function, and configured by calling one of thefunction
described in the table below. A Slot may be reconfigured later. Note that a conditional descriptor does not have a
time slot, allocating atime for a conditional times slot will lead to an incorrect total time of the Minor Frame.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 164

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 21.6. Sot configuration

Function Name Description

gr1553bc_dlot_irg_prepare Unconditional IRQ slot

gr1553bc_slot_jump Unconditional jump

gr1553bc_slot_exttrig Dummy transfer, wait for EXTERNAL-TRIGGER
gr1553bc_dlot_transfer Transfer descriptor

gr1553bc_slot_empty Create Dummy Transfer descriptor
gr1553bc_slot_raw Custom Descriptor handling

Existing configured Slots can be manipulated with the following functions.

Table 21.7. Sot manipulation

Function Name Description

gr1553bc_slot_ dummy Set existing Transfer descriptor to Dummy. No 1553
bus transfer will be performed.

gr1553bc_slot_update Update Data Pointer and/or Status of a TBD

21.3.6. Changing a scheduled BC list (during BC-runtime)

Changing a descriptor that is being executed by the BC may result in a race between hardware and software. One
of the problemsisthat a descriptor contains multiple words, which can not be written simultaneously by the CPU.
To avoid the problem one can usethe INDICATION serviceto avoid modifying adescriptor currently in use by the
BC core. The indication service tells the user which Major/Minor/ Slot is currently being executed by hardware,
from that information an knowing the list layout and time slots the user may safely select which slot to modify
or wait until hardware is finished.

In most casesone can do descriptor initialization in several stepsto avoid race conditions. By initializing (allocating
and configuring) a Slot before starting the execution of the list, one may change parts of the descriptor which
are ignored by the hardware. Below is an example approach that will avoid potential races between software and
hardware:

1. Initialize Descriptor as Dummy and allocated time (often done before starting/ scheduling list)

2. Thelistis started, as aresult descriptorsin the list are executed by the BC

3. Modify transfer options and data-pointers, but maintain the Dummy bit.

4. Clear the Dummy bit in one atomic data store.

21.3.7. Custom Memory Setup

For designs where dynamically memory is not an option, or the driver is used on an AMBA-over-PCl bus (where
mal | oc() doesnot work), the API allowsthe user to provide custom addresses for the descriptor table and object
descriptions (lists, major frames, minor frames).

Being ableto configure a custom descriptor table may for example be used to save space or put the descriptor table
in on-chip memory. The descriptor tableissetup using thefunctiongr 1553bc_|i st _tabl e_al l oc(li st,
CUSTOM ADDRESS) .

Object descriptions are normally allocated during initialization procedure by providing the API with an object
configuration, for example a Magjor Frame configuration enables the API to dynamically allocate the software
description of the Major Frame and with all it's Minor frames. Custom object allocation requires internal under-
standing of the List management parts of the driver, it is not described in this document.

21.3.8. Interrupt handling

Therearedifferent typesof interrupts, Error IRQs, transfer IRQsand conditional IRQs. Error and transfer Interrupts
are handled by the general callback function of the device driver. Conditional descriptors that cause Interrupts
may be associated with a custom interrupt routine and argument.

Transfer Descriptors can be programmed to generate interrupt, and condition descriptors can be programmed to
generateinterrupt unconditionally (there exists other conditional typesaswell). When a Transfer descriptor causes

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 165

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

interrupt the general 1SR callback of the BC driver iscalled to let the user handle the interrupt. Transfers descriptor
IRQ is enabled by configuring the descriptor.

When a condition descriptor causes an interrupt a custom IRQ handler is called (if assigned) with a custom argu-
ment and the descriptor address. The descriptor address my be used to look up the MID of the descriptor. The
API provides functions for placing unconditional IRQ points anywhere in the list. Below is an pseudo example
of adding an unconditional IRQ point to alist:

voi d funcSetup()

{
int MD,

/* Allocate Slot for IRQ Point */
gr1553bc_sl ot _all oc(& D, TIME=0, ..);

/* Prepare unconditional IRQ at allocated SLOT */
gr1553bc_sl ot _irq_prepare(M D, funcl SR, data);

/* Enabling the IRQ nay be done later during list
* execution */
gr1553bc_sl ot _irq_enabl e(M D);

}
void funcl SR(*bd, *data)

{
/* HANDLE ONE OR MJLTI PLE DESCRI PTORS
*(MIULTIPLE IN THI S EXAMPLE): */
int MD,

/* Lookup M D from descriptor address */
gr1553bc_m d_from bd(bd, & D, NULL);

/* Print M D which caused the Interrupt */

printk("l1 RQ ON %96x\n", MD);
}

21.3.9. List API

Table 21.8. List API function prototypes

Prototype Description
int gri553bc_list_init(_ Initialize a List description structure. First step in creating a descrip-
struct gr1553bc_list **list, . . .
int max_mjor) tor list. This functions does not alocate any memory
int gri5s53bc_list_alloc(Allocate and initialize a List description structure. First step in creat-
struct gr1553bc_list **list, . . .
int max_mj or) ing adescriptor list.
void ?f 15?3b61|5i5§LJ If_EEE st FreeaList previously allocated using
struet af clist ist) gr 1553bc_list_alloc().
int gri553bc_list_config(Configure List parameters and associate it with a BC device that will
struct gr1553bc_list *list, . . .
struct gr1553bc_list_cfg *cfg, execute the list later on. List parameters are used when generating
voi d *bc) descriptors.
voi d gr1553bc_l i st_Iink_maj or (Links two Major frames together, the Mgjor frame indicated by next
struct gr1553bc_nmj or *ngj or, . . L :
struct gr1553bc_major *next) will be executed after the Major frame indicated by major. A uncon-
ditional jump isinserted to implement the linking.
int 9: r15§fb°r_'li5§;ielt ,_"fli glf (. Assign aMajor Frame aMajor Frame number in alist. Thiswill link
Struct gr1553be aj of *rmaj or Major (no-1) and Major (no+1) with the Major frame, the linking
int no) can be changed by calling gr 1553bc_I| i st _|i nk_maj or () af-
ter all major frames have been assigned a number.
int gri1553bc_m nor _table_size(Calculate the size required in the descriptor table by one minor
struct gr1553bc_m nor *minor) frame
int gri553bc_list_table_size(Calculate the size required for the complete descriptor list.
struct gr1553bc_list *list)
int 9: 155fb°_'1isgtsgt alb! et_i ,'3: t (t Initialize a descriptor list. Thebdt ab_cust omargument can be
void *bdtab customy used to assign a custom address of the descriptor list. This function
does not allocate any memory.
int 9: r15§fb°r_'lgzggfcalb! et_aL: ,OCE Allocate and initialize a descriptor list. Thebdt ab_cust omargu-
ioi J *bgt ab_cust—o'n,s st ment can be used to assign a custom address of the descriptor list.
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 166

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Prototype

Description

voi d gr1553bc_list_table_free(

struct gr1553bc_list *list)

Free descriptor list memory previously allocated by
gr 1553bc_list_table_alloc().

int

gr1553bc_list_tabl e_buil d(
struct gr1553bc_list *list)

Build all descriptorsin adescriptor list. Unused descriptors will be
initialized as empty dummy descriptors. After this call descriptors
can beinitialized by user.

int

gr 1553bc_maj or _i ni t _skel (
struct gr1553bc_nmj or **ngjor,
struct gr1553bc_mmj or_cfg *cfg)

Initialize a software description skeleton of aMajor Frame and it's
Minor Frames. This function does not allocate any memory.

int

gr 1553bc_mmaj or _al | oc_skel (
struct gr1553bc_nsj or **ngj or,
struct gr1553bc_maj or_cfg *cfg)

Allocate and initialize a software description skeleton of aMajor
Frame and it's Minor Frames.

int

gr1553bc_list_freetime(
struct gr1553bc_list *list,
int md)

Get total unused slot time of a Minor Frame. Only available if time
management has been enabled for the Minor Frame.

int

gr 1553bc_sl ot _al | oc(

struct gr1553bc_list *list,
int *md,

int timeslot,

uni on gr1553bc_bd **bd)

Allocate a Slot from a Minor Frame. The Slot location isidentified
by MID. If the MID identifies a Minor frame the first free dlot is al-
located within the minor frame.

int

gr 1553bc_sl ot _free(
struct gr1553bc_list *list,
int mid)

Return aprevioudly allocated Slot to a Minor Frame. The slot-time is
also returned.

int

gr 1553bc_mi d_f rom bd(
uni on gr1553bc_bd *bd,
int *md,

int *async)

Get Sot/Message | D from descriptor address.

uni on gr1553bc_bd *gr 1553bc_sl ot _bd(

struct gr1553bc_list *list,
int md)

Get descriptor address from MID.

int

gr 1553bc_sl ot _i rq_prepar e(
struct gr1553bc_list *list,
int md,

bcirg_func_t func,

voi d *data)

Prepare a condition Slot for generating interrupt. Interrupt is dis-
abled. A custom callback function and datais assigned to Slot.

int

gr 1553bc_sl ot _i rg_enabl e(
struct gr1553bc_list *list,
int mid)

Enable interrupt of a previously interrupt-prepared Slot.

int

gr 1553bc_sl ot _i rg_di sabl e(
struct gr1553bc_list *list,
int md)

Disable interrupt of a previoudly interrupt-prepared Slot.

int

gr 1553bc_sl ot _j unmp(

struct gr1553bc_list *list,
int nmd,

uint32_t condition,

int to_md)

Initialize an allocated Slot, the descriptor isinitialized as a condi-
tional Jump Slot. The conditional is controlled by the third argu-
ment. The Slot jumped to is determined by the fourth argument.

int

gr1553bc_sl ot _exttrig(
struct gr1553bc_list *list,
int nid)

Create adummy transfer with the "Wait for external trigger" bit set.

int

gr 1553bc_sl ot _transfer(
struct gr1553bc_list *list,
int md,

int options,

int tt,

uint16_t *dptr)

Create atransfer descriptor.

int

gr 1553bc_sl ot _dunmmy(

struct gr1553bc_list *list,
int md,

unsi gned int *dummy)

Manipulate the DUMMY bit of atransfer descriptor. Can be used to
enable or disable atransfer descriptor.

int

gr 1553bc_sl ot _enpt y(
struct gr1553bc_list *list,
int md)

Create an empty transfer descriptor, with the DUMMY bit set. The
time- slot previously allocated is preserved.

int

gr 1553bc_sl ot _updat e(
struct gr1553bc_list *list,
int mid,

uintl16_t *dptr,

unsigned int *stat)

Update atransfer descriptors data pointer and/or status field.

int

gr 1553bc_sl ot _raw

struct gr1553bc_list *list,
int md,

unsi gned int flags,

ui nt32_t wordo,

Custom descriptor initialization. Note that a bad initialization may
break the BC driver.

BCC-UM
Jul 2023, Version 2.2.4

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

167

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Prototype Description

uint32_t wordl,
uint32_t word2,
ui nt32_t word3)

void gr1553bc_show | ist (Print information about a descriptor list to standard out. Used for de-

struct gr1553bc_list *list, bi .
int options) ugging.

21.3.9.1. Data structures

Thegr 1553bc_nmj or _cf g datastructure hold the configuration parametersof aMajor frameand al it'sMinor
frames. Thegr 1553bc_mi nor _cf g data structure contain the configuration parameters of one Minor Frame.

struct gr1553bc_m nor_cfg {
int slot_cnt;
int tineslot;

b

struct gr1553bc_mmjor_cfg {
int mnor_cnt;
struct gr1553bc_mi nor_cfg mnor_cfgs[1];

s
Table 21.9. gr1553bc_minor_cfg member descriptions.

M ember Description
slot_cnt Number of Slotsin Minor Frame
timesl ot Total time-slot of Minor Frame [us]

Table 21.10. gr1553bc_major_cfg member descriptions.

M ember Description

minor_cnt Number of Minor Framesin Mgjor Frame.

minor_cfgs Array of Minor Frame configurations. The length of the array is determined
by minor_cnt.

Thegr 1553bc_| i st _cf g datastructure hold the configuration parameters of adescriptor List. The Major and
Minor Frames are configured separately. The configuration parameters are used when generating descriptor.

struct gr1553bc_list_cfg {
unsi gned char rt_tineout[31];
unsi gned char bc_tineout;
int tropt_irqg_on_err;
int tropt_pause_on_err;
int async_list;

I
Table 21.11. gr1553bc _list_cfg member descriptions.

M ember Description

rt_timeout Number of us timeout tolerance per RT address. The BC has aresolution of
4us.

bc_timeout Number of us timeout tolerance of broadcast transfers

tropt_irq_on_err Determines if transfer descriptors should generate IRQ on transfer errors

tropt_pause on_err Determinesif the list should be paused on transfer error

async_list Set to non-zero if asynchronous list

21.3.9.2. gr1553bc_list_init

Initialize aList structure (no descriptors) with amaximum number of Major frames supported. The first argument
isapointer to wherethe newly allocated list pointer will be stored. The second argument determines the maximum

number of major frames the List will be able to support.

Thelist isinitialized according to the default configuration.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 168

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

This function will not allocate any memory. Replace this function call with gri553bc list_alloc() if you want the
driver to allocate the memory.

If aNULL pointer is provided, a negative result will be returned.
21.3.9.3. gr1553bc_list_alloc

Dynamically alocate and initialize a List structure (no descriptors) with a maximum number of Major frames
supported. The first argument is a pointer to where the newly alocated list pointer will be stored. The second
argument determines the maximum number of major frames the List will be able to support.

Thelist isinitialized according to the default configuration.

If thelist alocation fails, a negative result will be returned.

21.3.9.4. gr1553bc_list_free

Free aList that has been previoudly allocated with gr 1553bc_Ii st _al | oc().
21.3.9.5. gr1553bc_list_config

This function configures List parameters and associate the list with a BC device. The BC device may be used to
trand ate addresses from CPU address to addresses the GR1553B core understand, therefore the list must not be
scheduled on another BC device.

Some of the List parameters are used when generating descriptors, as global descriptor parameters. For example
all transfer descriptorsto a specific RT result in the same time out settings.

The first argument pointsto alist that is configure. The second argument points to the configuration description,
the third argument identifies the BC device that the list will be scheduled on. The layout of the list configuration
isdescribed in Table 21.11.

21.3.9.6. gr1553bc_list_link_major

At the end of a Major Frame a unconditional jump to the next Major Frame isinserted by the List API. The List
API assumes that a Major Frame should jump to the following Major Frame, however for the last Major Frame
the user must tell the API which frame to jump to. The user may also connect Major frames in a more complex
way, for example Major Frame 0 and 1 is executed only once so the last Mgjor frame jumps to Major Frame 2.

The Mgjor frame indicated by next will be executed after the Major frame indicated by major. A unconditional
jump isinserted to implement the linking.

21.3.9.7. gr1553bc_list_set_major

Major Frames are associated with anumber, aMajor Frame Number. Thisfunction creates an association between
aFrame and a Number, all Mgjor Frames must be assigned a number within aList.

The function will link Major[no-1] and Major[no+1] with the Major frame, the linking can be changed by calling
gr 1553bc_li st _|ink_maj or () after all major frames have been assigned a number.

21.3.9.8. gr1553bc_minor_table_size

Thisfunctionisused internally by the List API, however it can also be used in an application to calcul ate the space
required by descriptors of a Minor Frame.

Thetotal size of all descriptorsin one Minor Frame (in number of bytes) is returned. Descriptors added internally
by the List API are also counted.

21.3.9.9. gr1553bc_list_table size

Thisfunctionisused internaly by the List API, however it can also be used in an application to calcul ate the total
space required by all descriptors of aList.

Thetotal descriptor size of all Major/Minor Frames of the list (in number of bytes) is returned.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 169

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

21.3.9.10. gr1553bc_list_table init

The List isinitialized with the new descriptor table, i.e. the software's internal representation is initialized. The
descriptors themselves are not initialized.

The second argument bdt ab_cust omisthe memory area. If NULL the function will fail, if non-zero the value
will be taken asthe base descriptor address. If bit zero is set the address is assumed to be readable by the GR1553B
core, if bit zero is cleared the addressis assumed to be readable by the CPU and translated for the GR1553B core.
Bit zero makes sense to use on a GR1553B core located on a AMBA-over-PCI bus.

This function will not allocate any memory. Replace this function call with gr1553bc list_table alloc() if you
want the driver to allocate the memory.

21.3.9.11. gr1553bc_list_table alloc

Thisfunction allocates all descriptors needed by aList, either dynamically or by auser provided address. The List
isinitialized with the new descriptor table, i.e. the software's internal representation isinitialized. The descriptors
themselves are not initialized.

The second argument bdt ab_cust omdeterminesthe allocation method. If NULL the API will allocate memory
usingmal | oc(), if non-zero the value will be taken as the base descriptor address. If bit zero is set the address
is assumed to be readable by the GR1553B core, if bit zero is cleared the address is assumed to be readable by
the CPU and trandlated for the GR1553B core. Bit zero makes sense to use on a GR1553B core located on a
AMBA-over-PCl bus.

21.3.9.12. gr1553bc_list_table free
Free previously allocated descriptor table memory.
21.3.9.13. gr1553bc_list_table build

This function builds all descriptors in a descriptor list. Unused descriptors will be initialized as empty dummy
descriptors. Jumps between Minor and Major Frames will be created according to user configuration.

After this call descriptors can beinitialized by user.
21.3.9.14. gr1553bc_major_init_skel
Initialize aMajor Frame and it's Minor Frames according to the configuration pointed to by the second argument.

This function will not allocate any memory. Replace this function call with gri55bc_major_alloc_skel() if you
want the driver to allocate the memory.

The configuration of the Major Frame is determined by the gr1553bc_major_cfg structure, described in Ta-
ble 21.10.

On success zero is returned, on failure anegative value is returned.
21.3.9.15. gr1553bc_major_alloc_skel

Allocate and initialize a Major Frame and it's Minor Frames according to the configuration pointed to by the
second argument.

The pointer to the allocated Major Frame is stored into the location pointed to by the major argument.

The configuration of the Mgor Frame is determined by the gri553bc_major_cfg structure, described in Ta
ble 21.10.

On success zero is returned, on failure a negative value is returned.
21.3.9.16. gr1553bc_list_freetime

Minor Frames can be configured to handle time slot allocation. This function returns the number of microseconds
that is left/unused. The second argument mid determines which Minor Frame.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 170

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

21.3.9.17. gr1553bc_slot_alloc

Allocate a Slot from a Minor Frame. The Slot location isidentified by ni d. If the MID identifies a Minor frame
thefirst free dot is allocated within the minor frame.

The resulting MID of the Slot is stored back to mi d, the MID can be used in other function call when setting up
the Slot. Themi d argument is thus of in and out type.

Thethird argument, t i mes| ot , determinesthetime slot that should be allocated to the Slot. If time management
isnot configured for the Minor Frame atime can still be assigned to the Slot. If the Slot should step to the next Slot
directly when finished (no assigned time-slot), the argument must be set to zero. If time management is enabled for
the Minor Frame and the requested time-slot is longer than the free time, the call will result in an error (negative
result).

The fourth and last argument can optionally be used to get the address of the descriptor used.
21.3.9.18. gr1553bc_slot_free

Return Slot and timeslot allocated from the Minor Frame.

21.3.9.19. gr1553bc_mid_from_bd

Looks up the Slot/Message ID (MID) from a descriptor address. This function may be useful in the interrupt
handler, where the address of the descriptor is given.

21.3.9.20. gr1553bc_slot_bd
L ooks up descriptor address from MID.
21.3.9.21. gr1553bc_slot_irq_prepare

Prepares a condition descriptor to generate interrupt. Interrupt will not be enabled until
gr 1553bc_sl ot _i rg_enabl e() is called. The descriptor will be initialized as an unconditional jump to
the next descriptor. The Slot can be associated with a custom callback function and an argument. The callback
function and argument is stored in the unused fields of the descriptor.

Once enabled and interrupt is generated by the Slot, the callback routine will be called from interrupt context.
The function returns a negative result if failure, otherwise zero is returned.
21.3.9.22. gr1553bc_slot_irq_enable

Enables interrupt of a previously prepared unconditional jump Slot. The Slot is expected to be initialized with
gr 1553bc_sl ot _irqg_prepare() . Thedescriptor is changed to do a unconditional jump with interrupt.

The function returns a negative result if failure, otherwise zero is returned.
21.3.9.23. gr1553bc_slot_irg_disable

Disable unconditional IRQ point, the descriptor is changed to unconditional JUMP to the following descriptor,
without generating interrupt. After disabling the Slot it can be enabled again, or freed.

The function returns a negative result if failure, otherwise zero is returned.
21.3.9.24. gr1553bc_slot_jump
Initialize a Slot with a custom jump condition. The arguments are declared in the table below.

Table 21.12. gr1553bc_list_cfg member descriptions.

Argument Description
list List that the Slot is located at.
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 171

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Argument Description

mid Slot Identification.

condition Custom condition written to descriptor. See hardware documentation for
options.

to_mid Slot Identification of the Slot that the descriptor will be jumping to.

Returns zero on success.
21.3.9.25. gr1553bc_slot_exttrig

The BC supports an external trigger signal input which can be used to synchronize 1553 transfers. If used, the
externa trigger is normally generated by some kind of Time Master. A message slot may be programmed to
wait for an external trigger before being executed, this feature allows the user to accurate send time synchronize
messagesto RTs.

This function initializes a Slot to a dummy transfer with the "Wait for external trigger" bit set.
Returns zero on success.
21.3.9.26. gr1553bc_slot_transfer

Initializes a descriptor to atransfer descriptor. The descriptor isinitialized according to the function arguments an
theglobal List configuration parameters. The settingsthat are controlled on aglobal level (and not by thisfunction):

¢ |RQ after transfer error

* IRQ after transfer (not supported, insert separate IRQ slot after this)

* Pause schedule after transfer error

 Pause schedule after transfer (not supported)

« Slot time optional (set when MID allocated), otherwise O

e (OPTIONAL) Dummy Bit, set using slot_empty() or ... TT_DUMMY

« RT time out tolerance (managed per RT)

The arguments are declared in the table below.

Table 21.13. gr1553bc_dlot_transfer argument descriptions.

Argument Description
list List that the Slot islocated at
mid Slot Identification
options Options:
* Retry Mode

* Number of retires
» Busselection (A or B)
e Dummy bit

tt Transfer options, see BC transfer type macros in header file:
* transfer type

e RT src/dst address

* RT subaddress

 word count

* mode code

dptr Descriptor Data Pointer. Used by Hardware to read or write datato the 1553 bus. If bit zero is
set the address is trandlated by the driver into an address which the hardware can access(may
be the case if BC deviceislocated on an AMBA-over-PCl bus), if cleared it is assumed that
no trangation is required(typical case)

Returns zero on success.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 172

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

21.3.9.27. gr1553bc_slot_dummy
Manipulate the DUMMY hit of atransfer descriptor. Can be used to enable or disable atransfer descriptor.

The durmmy argument points to an area used as input and output, asinput bit 31 iswritten to the dummy bit of the
descriptor, as output the old value of the descriptors dummy bit is written.

Returns zero on success.

21.3.9.28. gr1553bc_slot_empty

Create an empty transfer descriptor, with the DUMMY bit set. The time-slot previously allocated is preserved.
Returns zero on success.

21.3.9.29. gr1553bc_slot_update

This function will update a transfer descriptors status and/or update the data pointer.

If thedpt r pointer is non-zero the Data Pointer word of the descriptor will be updated with the value of dpt r .
If bit zero is set the driver will translate the data pointer address into an address accessible by the BC hardware.
Trandlation is an option only for AMBA-over-PCI.

If thest at pointer isnon-zero the Statusword of the descriptor will be updated according to the content of st at .
The old Status will be stored into st at . The lower 24-bits of the current Status word may be cleared, and the
dummy bit may be set:

bd->status = *stat & (bd->status Oxffffff) | (*stat & 0x80000000);

Note that the status word is not written (only read) when value pointed to by st at iszero.
Returns zero on success.

21.3.9.30. gr1553bc_slot_raw

Custom descriptor initialization. Note that a bad initialization may break the BC driver.
The arguments are declared in the table below.

Table 21.14. gr1553bc_dslot_transfer argument descriptions.

Argument Description

list List that the Slot islocated at

mid Slot Identification

flags Determine which words are updated. If bit N is set wordN is written into descriptor wordN, if
bit N is zero the descriptor wordN is not modified.

wordO 32-bit Word written to descriptor address 0x00

wordl 32-bit Word written to descriptor address 0x04

word2 32-bit Word written to descriptor address 0x08

word3 32-bit Word written to descriptor address 0x0C

Returns zero on success.
21.3.9.31. gr1553bc_show_list

Print information about a List to standard out. Each Major Frame's first descriptor for example is printed. This
function is used for debugging only.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 173

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

22. GR1553B Remote Terminal Driver

22.1. Introduction

This section describes the GRLIB GR1553B Remote Terminal (RT) device driver interface. The driver relies on
the GR1553B driver. The reader is assumed to be well acquainted with MIL-STD-1553 and the GR1553B core.

22.1.1. GR1553B Remote Terminal Hardware

The GR1553B core supportsany combination of the Bus Controller (BC), BusMonitor (BM) and Remote Terminal
(RT) functionality. This driver supports the RT functionality of the hardware, it can be used simultaneously with
the Bus Monitor (BM) functionality. When the BM is used together with the RT interrupts are shared between
thedrivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through separate registers.
In order to shared hardware resources between the three GR1553B drivers, the three depends on a lower level
GR1553B driver, see GR1553B driver section.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.

22.1.2. Driver registration

The driver registration is handled by the GR1553B driver, see Chapter 20.
22.2. User Interface

22.2.1. Overview

The RT software driver provides accessto the RT core and help with creating memory structures accessed by the
RT core. The driver provides the serviceslist below,

» Basic RT functionality (RT address, Bus and RT Status, Enabling core, etc.)

< Event logging support

« Interrupt support (Global Errors, Data Transfers, Mode Code Transfer)

* DMA-Memory configuration

¢ Sub Address configuration

« Support for Mode Codes

« Transfer Descriptor List Management per RT sub address and transfer type (RX/TX)

The driver sources and definitions are listed in the table below, the path is given relative to the BCC toolchain.

Table 22.1. RT driver Source location

Filename Description
src/libdrv/sre/gr1553b/gris53rt.c GR1553B RT Driver source
src/libdrv/src/include/gri553rt.h GR1553B RT Driver interface declaration

22.2.1.1. Accessing an RT device

In order to access an RT core, a specific core must be identified (the driver support multiple devices). The core
isopened by calling gr 1553rt _open() , the open function alocates an RT device by calling the lower level
GR1553B driver and initializes the RT by stopping all activity and disabling interrupts. After an RT has been
opened it can be configured gr 1553rt _confi g_i ni t (), SA-table configured, descriptor lists assigned to
SA, interrupt callbacks registered, and finally communication started by callinggr 1553rt _start () . Oncethe
RT is started interrupts may be generated, data may be transferred and the event log filled. The communication
can be stopped by calling gr 1553rt _st op() .

When the application no longer needs to access the RT core, the RT isclosed by callinggr 1553rt _cl ose() .
22.2.1.2. Introduction to the RT Memory areas

For the RT there are four different types of memory areas. The access to the areas is much different and involve
different latency requirements. The areas are:

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 174

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

e Sub Address (SA) Table

» Buffer Descriptors (BD)

« Databuffers referenced from descriptors (read or written)
« Event (EV) logging buffer

The memory types are described in separate sections below. Generally three of the areas (controlled by the driver)
can be dynamically allocated by the driver or assigned to acustom location by the user. Assigning acustom address
is typicaly useful when for example a low-latency memory is required, or the GR1553B core is located on an
AMBA-over- PCl bus where memory accesses over the PCl bus will not satisfy the latency requirements by the
1553 bus, instead amemory local to the RT core can be used to shorten the access time. Note that when providing
custom addresses the alignment requirement of the GR1553B core must be obeyed, which isdifferent for different
areas and sizes. The memory areas are configured using thegr 1553rt _confi g_i ni t () function.

22.2.1.3. Sub Address Table

The RT core provides the user to program different responses per sub address and transfer type through the sub
address table (SA-table) located in memory. The RT core consult the SA-table for every 1553 data transfer com-
mand on the 1553 bus. The table includes options per sub address and transfer type and a pointer to the next
descriptor that let the user control the location of the data buffer used in the transaction. See hardware manual
for a compl ete description.

The SA-tableisfixed size to 512 bytes.

Since the RT is required to respond to BC request within a certain time, it is vital that the RT has enough time
to look up user configuration of atransfer, i.e. read SA-table and descriptor and possibly the data buffer as well.
The driver provides a way to let the user give a custom address to the sub address table or dynamically alocate
it for the user. The default action isto let the driver dynamically allocate the SA-table, the SA-table will then be
located in the main memory of the CPU. For RT core's located on an AMBA-over- PCI bus, the default action is
not acceptable due to the latency requirement mentioned above.

The SA-table can be configured per SA by callingthegr 1553rt _sa_set opt s() function. The mask argu-
ment makes it possible to change individual bit in the SA configuration. This function must be called to enable
transfers from/to a sub address. See hardware manual for SA configuration options. Descriptor Lists are assigned
toaSA by calinggr 1553rt _list_sa().

Theindication service can be used to determine the descriptor used in the next transfer, see Section 22.2.1.8.
22.2.1.4. Descriptors

A GR1553B RT descriptor is located in memory and pointed to by the SA-table. The SA-table points out the
next descriptor used for a specific sub address and transfer type. The descriptor contains three input fields: Con-
trol/Status Word determines options for a specific transfer ans status of a completed transfer; Data buffer pointer,
16-hit aligned; Pointer to next descriptor within sub address and transfer type, or end-of-list marker.

All descriptors are located in the same range of memory, which the driver refers to as the BD memory. The
BD memory can by dynamically allocated (located in CPU main memory) by the driver or assigned to a custom
location by the user. From the BD memory descriptors for all sub addresses are allocated by the driver. The driver
works internally with 16-bit descriptor identifiers allowing 65k descriptor in total. A descriptor is allocated for a
specific descriptor List. Each descriptor takes 32 bytes of memory.

The user can build and initialize descriptors using the API function gr 1553rt _bd_i ni t () and update the
descriptor and/or view the status and time of a completed transfer.

Descriptors are managed by a data structure named gr 1553rt _| i st . A List is the software representation of
achain of descriptors for a specific sub address and transfer type. Thus, 60 lists in total (two lists per SA, SAO
and SA31 are for mode codes) per RT. The List simplifies the descriptor handling for the user by introducing
descriptor numbers (ent ry_no) used when referring to descriptors rather than the descriptor address. Up to 65k
descriptors are supported per List by the driver. A descriptor list is assigned to a SA and transfer type by calling
gr1553rt _list_sa().

When aList is created and configured a maximal number of descriptors are given, giving the APl a possibility to
allocate the descriptors from the descriptor memory area configured.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 175

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Circular buffers can be created by a chain of descriptors where each descriptors data buffer is one element in the
circular buffer.

22.2.1.5. Data Buffers

Data buffers are not accessed by the driver at al, the address is only written to descriptor upon user request. Itis
up to the user to provide the driver with valid addresses to data buffers of the required length.

Note that addresses given must be accessible by the hardware. If the RT coreislocated on a AMBA-over-PCl bus
for example, the address of a data buffer from the RT core's point of view is most probably not the same as the
address used by the CPU to access the buffer.

22.2.1.6. Event Logging

Transfer events (Transmission, Reception and Mode Codes) may be logged by the RT core into a memory area
for (later) processing. The events logged can be controlled by the user at a SA transfer type level and per mode
code through the Mode Code Control Register.

The driver API access the eventlog on two occasions, either when the user reads the eventlog buffer using the
gr 1553rt _evl og_r ead() function or from theinterrupt handler, see the interrupt section for more informa-
tion. Thegr 1553rt _evl og_read() function is called by the user to read the eventlog, it simply copies the
current logged entriesto auser buffer. The user must empty the driver eventlog in time to avoid entriesto be over-
written. A certain descriptor or SA may be logged to help the application implement communication protocols.

Theeventlog istypically sized depending the frequency of the log input (logged transfers) and the frequency of the
log output (task reading the log). Every logged transfer is described with a 32-bit word, making it quite compact.

Thememory of the eventlog does not require astight latency requirement asthe SA-tableand descriptors. However
the user still isprovided the ability to put the eventlog at acustom address, or letting the driver dynamically allocate
it. When providing a custom address the start addressis given, the areamust have room for the configured number
of entries and have the hardware required alignment.

Note that the alignment requirement of the eventlog varies depending on the eventlog length.
22.2.1.7. Interrupt service

The RT core can be programmed to interrupt the CPU on certain events, transfers and errors (SA-tableand DMA).
The driver divides transfers into two different types of events, mode codes and data transfers. The three types of
events can be assigned custom callbacks called from the driver's interrupt service routine (ISR), and custom argu-
ment can be given. The callbacks are registered per RT device using the functions gr 1553rt _irqg_err (),
gr1553rt _irqg_nc(), grl1553rt_irqg_sa().Notethat thethreedifferent callbacks have different argu-
ments.

Error interrupts are discovered in the ISR by looking at the IRQ event register, they are handled first. After the
error interrupt has been handled by the user (user interaction is optional) the RT core is stopped by the driver.

Datatransfers and Mode Code transfers are logged in the eventlog. When atransfer-triggered interrupt occurs the
ISR starts processing the event log from the first event that caused the IRQ (determined by hardware register)
calling themode code or datatransfer callback for each event in thelog which hasgenerated an |RQ (determined by
the IRQSR hit). Even though both the ISR and the eventlog read functionr 1553rt _evl og_r ead() processes
the eventlog, they are completely separate processes - one does not affect the other. It is up to the user to make
sure that events that generated interrupt are not double processed. The callback functions are called in the same
order as the event was generated.

Isis possible to configure different callback routines and/or arguments for different sub addresses (1..30) and
transfer types (RX/TX). Thus, 60 different callback handlers may be registered for data transfers.

22.2.1.8. Indication service

The indication service is typically used by the user to determine how many descriptors have been processed by
the hardware for a certain SA and transfer type. The gr 1553rt _i ndi cat i on() function returns the next

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 176

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

descriptor number which will be used next transfer by the RT core. The indication function takes a sub address
and an RT device as input, By remembering which descriptor was processed last the caller can determine how
many and which descriptors have been accessed by the BC.

22.2.1.9. Mode Code support

The RT core anumber of registersto control and interact with mode code commands. See hardware manual which
mode codes are available. Each mode code can be disabled or enabled. Enabled mode codes can belogged and in-
terrupt can be generated upon transmission events. Thegr 1553rt _confi g_i ni t () functionisused to con-
figure the aforementioned mode code options. Interrupt caused by mode code transmissions can be programmed
to call the user through an callback function, see the interrupt Section 22.2.1.7.

The mode codes " Synchronization with data’, " Transmit Bit word" and "Transmit Vector word" can be interacted
with through a register interface. The register interface can be read with the gr 1553rt _st at us() function
and selected (or al) hits of the bit word and vector word can be written using gr 1553rt _set _vecwor d()
function.

Other mode codes can interacted with using the Bus Status Register of the RT core. The register
can be read using the gr 1553rt _status() function and written selectable bit can be written using
gr 1553rt _set _bussts().

22.2.1.10. RT Time

TheRT core hasaninternal time counter with aconfigurabletimeresolution. Thefinest timeresolution of thetimer
counter is one microsecond. Theresolutionisconfigured usingthegr 1553rt _confi g_i ni t () function. The
current timeisread by calling thegr 1553rt _st at us() function.

22.2.2. Application Programming Interface

The RT driver API consists of the functionsin the table below.

Table 22.2. Data structures

Protoype Description

void *gr1553rt_open(int mnor) Open an RT device by instance number. Returns a handle identifying
the specific RT device. The handleis given as input in most func-
tions of the AP

void gri1553rt_close(void *rt) Close a previously opened RT device
int gr 1$§3rtt_00nf Pg_init(Configure the RT devicedriver
void *rt,

struct gr1553rt_cfg *cfg)

Configure the RT device driver and allo-
cate device memory

int gr1553rt_config_free(void *rt) Free dlocated device memory
int gris553rt_start(void *rt) Start RT communication, enables Interrupts
void gri1553rt_stop(void *rt) Stop RT communication, disablesinterrupts
void gr (11553: t_status(Get Time, BUusRT Status and mode code status
Vol *rt,
struct gr1553rt_status *status)
int gr ;353r:_i ndi cati on(Get the next descriptor that will processed of an RT sub-address and
Vol *rt,
int subadr, transfer type
int *txeno,
int *rxeno)
int gr _1353f:_e\/' 0g_read(Copy contents of event log to a user provided data buffer
void *rt,
unsi gned int *dst,
int max)
void 9_f3553:t_59t —vecwor d(Set al or a selection of hitsin the Vector word and Bit word used by
Vol *rt, n . . " " H n
unsi gned int nask, the "Transmit Bit word" and "Transmit Vector word" mode codes

unsi gned i nt words)

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 177

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

unsi gned int nask,
unsi gned int sts)

Protoype Description
voi d gr(11553:t_set _bussts(Modify a selection of bitsin the RT Bus Status register
void *rt,

voi d gr1553rt_sa_setopts(
void *rt,
int subadr,
unsi gned int nmask,
unsi gned int options)

Configures a sub address control word located in the SA-table.

void gr1553rt_list_sa(
struct gr1553rt_list *list,
int *subadr,
int *tx)

Get the Sub address and transfer type of a scheduled list

voi d gr1553rt_sa_schedul e(
void *rt,
int subadr,
int tx,
struct gr1553rt_list *list)

Schedule a RX or TX descriptor list on a sub address of a certain
transfer type

int gr1553rt_irq_err(
void *rt,
gr1553rt_irgerr_t func,
voi d *dat a)

Assign an Error Interrupt handler callback routine and custom argu-
ment

int gr1553rt_irq_nc(
void *rt,
gr1553rt_irgnc_t func,
voi d *data)

Assign aMode Code Interrupt handler callback routine and custom
argument

int gr1553rt_irqg_sa(
void *rt,
int subadr,
int tx,
gri1553rt_irqg_t func,
voi d *data)

Assign a Data Transfer Interrupt handler callback routine and custom
argument to a certain sub address and transfer type

int gri553rt_list_init(
void *rt,
struct gr1553rt_list **plist,
struct gr1553rt_list_cfg *cfg)

Initialize a descriptor List according to configuration. The List can
be used for RX/TX on any sub address.

int gr1553rt_list_alloc(
void *rt,
struct gri1553rt_list **plist,
struct gr1553rt_list_cfg *cfg)

Initialize and allocate a descriptor List according to configuration.
The List can be used for RX/TX on any sub address.

int gr1553rt_bd_init(
struct gr1553rt_list *list,
unsi gned short entry_no,
unsi gned int flags,
uint16_t *dptr,
unsi gned short next)

Initialize a Descriptor in aList identified by number.

int gri1553rt_bd_updat e(
struct gr1553rt_list *list,
int entry_no,
unsi gned int *status,
uint16_t **dptr)

Update the status and/or the data buffer pointer of a descriptor.

22.2.2.1. Data structures

Thegr 1553rt _cf g datastructureisused to configurean RT device. The configuration parametersare described

in the table below.

struct gri553rt_cfg {
unsi gned char rtaddress;
unsi gned i nt nodecode;
unsi gned short tinme_res;
void *satab_buffer;
void *evl og_buffer;
int evlog_size;
int bd_count;
voi d *bd_buffer;
void *bd_sw buffer;

I

Table 22.3. gr1553rt_cfg member descriptions

M ember Description
rtaddress RT Address on 1553 bus[0..30]
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 178

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

M ember Description

modecode Mode codesenabl e/ di sabl e/ | RQ' EV- Log. Each mode code has a 2-bit configura-
tion field. Mode Code Control Register in hardware manual

time_res Time tag resolution in microseconds

satab_buffer Sub Address Table (SA-table) allocation setting. Can be dynamically allocated (zero) or
custom location (non-zero). If custom location of SA-tableis given, the address must be
aligned to 10-bit (1kB) boundary and at least 16* 32 bytes.

evlog_buffer Eventlog DMA buffer allocation setting. Can be dynamically allocated (zero) or cus-
tom location (non-zero). If custom location of eventlog is given, the address must be of
evl og_si ze andalignedtoevl og_si ze. See hardware manual.

evlog_size Length in bytes of Eventlog, must be a multiple of 2. If set to zero event log is disabled,
note that enabling logging in SA-table or descriptors will cause failure when eventlog is
disabled.

bd_count Number of descriptorsfor RT device. All descriptor lists share the descriptors. Maximum
is65K descriptors.

bd_buffer Descriptor memory area all ocation setting. Can be dynamically allocated (zero) or custom
location (non-zero). If custom location of descriptorsis given, the address must be aligned
to32bytesand of (32 * bd_count) bytessize.

bd_sw_buffer Descriptor memory area allocation for internal usage. Can be dynamically allocated (zero)
or custom location (non-zero). If custom location of descriptorsis given, the area must be
of (4 * bd_count) bytessize.

Thegr 1553rt _|i st _cf g datastructure hold the configuration parameters of a descriptor List.

struct gr1553rt_list_cfg {
unsigned int bd_cnt;

b

Table 22.4. gr1553rt_list_cfg member descriptions

M ember

Description

bd_cnt

Number of descriptorsin List

The current status of the RT core is stored in the gr 1553rt st at us data structure by the function
gr1553rt_status(). The fields are described below.

struct gr1553rt_status {

unsi gned int status;
unsi gned int bus_status;
unsi gned short synctine;
unsi gned short syncword;
unsi gned short time_res;
unsi gned short tinmne;

}
Table 22.5. gr1553rt_status member descriptions

Member Description

status Current value of RT Status Register

bus status Current value of RT Bus Status Register

synctime Time Tag when last synchronize with data was received

syncword Data of last mode code synchronize with data

time res Time resolution in microseconds (set by config)

time Current TimeTag. (ti ne_res * tinme) givesthe number of microsec-
onds since last time overflow.

22.2.2.2. gr1553rt_open

Opens a GR1553B RT device identified by instance number, m nor . The instance number is determined by the
order in which GR1553B cores with RT functionality are found, the order of the Plug & Play.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 179

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

A handle is returned identifying the opened RT device, the handle is used internally by the RT driver, it is used
as an input parameter rt to al other functions that manipulate the hardware.

Close and Stop an RT deviceidentified by input argument rt previously returned by gr 1553rt_open().
22.2.2.3. gr1553rt_close

Close and Stop an RT deviceidentified by input argument rt previously returned by gr 1553rt_open().
22.2.2.4. gr1553rt_config_init

Configure memory for an RT device. The configuration parameters are stored in the location pointed to by cf g.
The layout of the parameters must follow thegr 1553rt _cf g data structure, described in Table 22.3.

This function will not alocate any memory. Replace this function call with gr1553rt_config_alloc() if you want
the driver to allocate memory. If any of the data pointersare NULL, then thisfunction will return anegative result.
On success zero is returned.

22.2.2.5. gr1553rt_config_alloc

Configure and allocate memory for an RT device. The configuration parameters are stored in the location pointed
toby cf g. Thelayout of the parameters must follow thegr 1553rt _cf g datastructure, described in Table 22.3.

If memory allocation fails (in case of dynamic memory allocation) the function return anegative result, on success
zerois returned.

22.2.2.6. gr1553bm_config_free
Free allocated memory.
22.2.2.7. gr1553rt_start

Starts RT communication by enabling the core and enabling interrupts. The user must have configured the driver
(RT address, Mode Code, SA-table, lists, descriptors, etc.) before calling this function.

After the RT has been started the configuration function can not be called.
On success this function returns zero, on failure a negative result is returned.
22.2.2.8. gr1553rt_stop

Stops RT communication by disabling the core and disabling interrupts. Further 1553 commands to the RT will
be ignored.

22.2.2.9. gr1553rt_status

Read current status of the RT core. The statusiswritten to thelocation pointed to by statusin the format determined
by thegr 1553rt _st at us structure described in Table 22.5.

22.2.2.10. gr1553rt_indication

Get the next descriptor that will be processed for a specific sub address. The descriptor number islooked up from
the descriptor address found the SA-table for the sub address specified by subadr argument.

The descriptor number of respective transfer type (RX/TX) will be written to the address given by t xeno and/or
r xeno. If end-of-list has been reached, -1 is stored intot xeno or r xeno.

If therequest issuccessful zeroisreturned, otherwise anegative number isreturned (bad sub address or descriptor).
22.2.2.11. gr1553rt_evlog_read

Copy up to max number of entries from eventlog into the address specified by dst . The actual number of entries
read isreturned. It isimportant to read out the eventlog entriesin time to avoid dataloss, the eventlog can be sized
so that dataloss can be avoided.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 180

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Zero isreturned when entries are available in the log, negative on failure.
22.2.2.12. gr1553rt_set_vecword

Set a selection of bitsin the RT Vector and/or Bit word. The words are used when,

» Vector Word is used in response to " Transmit vector word" BC commands
e Bit Word is used in response to "Transmit bit word" BC commands

The argument mask determines which bits are written, and wor ds determines the value of the bits written. The
lower 16-bits are the Vect or Wor d, the higher 16-bits are the Bit Word.

22.2.2.13. gr1553rt_set_bussts

Set a selection of bits of the Bus Status Register. The bits written is determined by the mask bit-mask and the
values written is determined by st s. Operation:

bus_status_reg = (bus_status_reg & ~mask) | (sts & mask)

22.2.2.14. gr1553rt_sa_setopts

Configure individua bits of the SA Control Word in the SA-table. One may for example Enable or Disable a SA
RX and/or TX. See hardware manual for SA-Table configuration options.

Themask argument isabit-mask, it determineswhich bitsarewritten and opt i ons determinesthevaluewritten.
Thesubadr argument selects which sub address is configured.

Note that SA-table is all zero after configuration, every SA used must be configured using this function.
22.2.2.15. gr1553rt_list_sa

This function looks up the SA and the transfer type of the descriptor list given by | i st . The SA is stored into
subadr , the transfer typeiswritteninto t x (TX=1, RX=0).

22.2.2.16. gr1553rt_sa _schedule

This function associates a descriptor list with a sub address (given by subadr) and atransfer type (given by t x).
Thefirst descriptor in the descriptor list iswritten to the SA-table entry of the SA.

22.2.2.17. gr1553rt_irq_err

his function registers an interrupt callback handler of the Error Interrupt. The handler f unc is called with the
argument data when a DMA error or SA-table access error occurs. The callback must follow the prototype of
gr1553rt _irqgerr _t

typedef void (*gr1553rt_irqerr_t)(int err, void *data);

Whereer r isthevalue of the GR1553B IRQ register at thetimethe error was detected, it can be used to determine
what kind of error occurred.

22.2.2.18. gr1553rt_irq_mc

This function registers an interrupt callback handler for Logged Mode Code transmission Interrupts. The han-
dler f unc is called with the argument data when a Mode Code transmission event occurs, note that inter-
rupts must be enabled per Mode Code using gr 1553rt_config_init(). The callback must follow the prototype of
gr1553rt _irqgnc_t:
typedef void (*gr1553rt_irqgnc_t)(

int ncode,

unsigned int entry,
void *data

)i
Where ntode is the mode code causing the interrupt, entry isthe raw event log entry.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 181

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

22.2.2.19. gr1553rt_irq_sa

Register aninterrupt callback handler for datatransfer triggered Interrupts, it is possibleto assign aunique function
and/or datafor every SA (given by subadr) and transfer type (given by t x). The handler f unc iscalled with the
argument dat a when a data transfer interrupt event occurs. Interrupts is configured on a descriptor or SA basis.
The callback routine must follow the prototype of gri553rt_irq t:
typedef void (*gr1553rt_irq_t)(

struct gr1553rt_list *list,

unsigned int entry,

int bd_next,
void *data

),

Wherel i st indicateswhich descriptor list (Sub Address, transfer type) caused theinterrupt event, ent r y isthe
raw event log entry, bd_next isthe next descriptor that will be processed by the RT for the next transfer of the
same sub address and transfer type.

22.2.2.20. gr1553rt_list_init

Configurealist structure according to configuration givenincf g, seethegr 1553rt _| i st _cf g datastructure
inTable22.4. Assignthelist to an RT device, however not to asub addressyet. Ther t handleisstored withinlist.

This function will not allocate any memory. Replace this function call with gr1553rt_list_alloc() if you want the
driver to allocate the memory.

Note that descriptor are allocated from the RT device, so the RT device itself must be configured using
gr 1553rt _config_i nit () beforecalling thisfunction.

A negative number is returned on failure, on success zero is returned.
22.2.2.21. gr1553rt_list_alloc

Allocate and configure alist structure according to configuration givenin cf g, seethegr 1553rt _|i st _cfg
data structure in Table 22.4. Assign the list to an RT device, however not to a sub address yet. Thert handle
is stored within list.

The resulting descriptor list is written to the location indicated by the pl i st argument.

Note that descriptor are allocated from the RT device, so the RT device itself must be configured using
gr1553rt _config_al | oc() beforecalling thisfunction.

A negative number is returned on failure, on success zero is returned.
22.2.2.22. gr1553rt_bd_init

Initialize adescriptor entry in alist. Thisistypically done prior to scheduling the list. The descriptor and the next
descriptor isgiven by descriptor indexesrelativetothelist (entry_no and next), seetable below for options
onnext . Set bit 30 of theargument f | ags in order to set the IRQEN bit of the descriptors Control/Status Word.
The argument dpt r iswritten to the descriptors Data Buffer Pointer Word.

Note that the data pointer is accessed by the GR1553B core and must therefore be avalid addressfor the core. This
isonly anissueif the GR1553B coreislocated on a AMBA- over-PCl bus, the address may need to be translated
from CPU accessible address to hardware accessible address.

Table 22.6. gr1553rt_bd_init next argument description

Values of next Description

Oxffff Indicate to hardware that thisis the last entry in the list, the next descriptor
is set to end-of-list mark (0x3).

Oxfffe Next descriptor (entry_no+1) or O islast descriptor inlist.

other The index of the next descriptor.

A negative number is returned on failure, on success a zero is returned.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 182

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
22.2.2.23. gr1553rt_bd_update
Manipulate and read the Control/Status and Data Pointer words of a descriptor.
If st at us isnon-zero, the Control/Status word is swapped with the content pointed to by st at us.
If dpt r isnon-zero, the Data Pointer word is swapped with the content pointed to by dpt r .

A negative number is returned on failure, on success a zero is returned.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 183

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

23. GR1553B Bus Monitor Driver

23.1. Introduction

This section describes the GRLIB GR1553B Bus Monitor (BM) device driver interface. The driver relies on the
GR1553B driver. The reader is assumed to be well acquainted with MIL-STD-1553 and the GR1553B core.

23.1.1. GR1553B Remote Terminal Hardware

The GR1553B core supportsany combination of the Bus Controller (BC), BusMonitor (BM) and Remote Terminal
(RT) functionality. This driver supports the BM functionality of the hardware, it can be used simultaneously
with the RT or BC functionality, but not both simultaneously. When the BM is used together with the RT or BC
interrupts are shared between the drivers.

The three functions (BC, BM, RT) are accessed using the same register interface, but through separate registers.
In order to shared hardware resources between the three GR1553B drivers, the three depends on a lower level
GR1553B driver, see GR1553B driver section.

The driver supports the on-chip AMBA bus and the AMBA-over-PCI bus.

23.1.2. Driver registration

The driver registration is handled by the GR1553B driver, see Chapter 20.
23.2. User Interface

23.2.1. Overview

The BM software driver provides access to the BM core and help with accessing the BM log memory buffer. The
driver provides the serviceslist below,

« Basic BM functionality (Enabling/Disabling, etc.)

« Filtering options

* Interrupt support (DMA Error, Timer Overflow)

¢ 1553 Timer handling

« Read BM log

The driver sources and definitions are listed in the table bel ow, the path is given relative to the BCC toolchain.

Table 23.1. BM driver Source location

Filename Description
src/libdrv/src/gr1553b/gr1553bm.c GR1553B BM Driver source
src/libdrv/src/include/gr1553bm.h GR1553B BM Diriver interface declaration

23.2.1.1. Accessing a BM device

In order to access a BM core a specific core must be identified (the driver support multiple devices). The core
is opened by calling gr 1553bm_open() , the open function allocates a BM device by calling the lower level
GR1553B driver and initializes the BM by stopping all activity and disabling interrupts. After a BM has been
opened it can be configured gr 1553bm confi g_i ni t () andthen started by callinggr 1553bm start ().
Once the BM is started the log isfilled by hardware and interrupts may be generated. The logging can be stopped
by calling gr 1553bm st op() .

When the application no longer needs to access the BM driver services, the BM is closed by calling
gr 1553bm cl ose().

23.2.1.2. BM Log memory

The BM log memory is written by the BM hardware when transfers matching the filters are detected. Each com-
mand, Status and Data 16-bit word takes 64-bits of space in the log, into the first 32-bits the current 24-bit 1553

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 184

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

timer is written and to the second 32-bit word status, word type, Bus and the 16-bit data is written. See hardware
manual.

The BM log DMA-area can be dynamically allocated by the driver or assigned to a custom location by the user.
Assigning a custom address is typically useful when the GR1553B core is located on an AMBA-over-PCl bus
where memory accesses over the PCl bus will not satisfy the latency requirements by the 1553 bus, instead a
memory local to the BM core can be used to shorten the access time. Note that when providing custom addresses
the 8-byte alignment requirement of the GR1553B BM core must be obeyed. The memory areas are configured
using the gr 1553bm confi g() function.

23.2.1.3. Accessing the BM Log memory

The BM Log is filled as transfers are detected on the 1553 bus, if the log is not emptied in time the log may
overflow and dataloss will occur. The BM log can be accessed with the functions listed below.

e gr1553bm_available()

e gr1553bm_read()

A custom handler responsible for copying the BM log can be assigned in the configuration of the driver. The
custom routine can be used to optimize the BM log read, for example one may not perhaps not want to copy al
entries, search the log for a specific event or compress the log before storing to another location.

23.2.1.4. Time

Th BM core has a 24-bit time counter with a programmable resolution through the
gr 1553bm confi g_i ni t () function. Thefinest resolution isamicrosecond. The BM driver maintains a 64-
bit 1553 time. The time can be used by an application that needs to be able to log for along time. The driver must
detect every overflow in order maintain the correct 64-bit time, the driver gives users two different approaches.
Either the timer overflow interrupt is used or the user must guarantee to call the gr 1553bm ti me() function
at least once before the second time overflow happens. The timer overflow interrupt can be enabled from the
gr 1553bm config_i nit () function.

The current 64-bit time can be read by calling gr 1553bm ti me() .

The application can determine the 64-bit time of every log entry by emptying the complete log at least once per
timer overflow.

23.2.1.5. Filtering

The BM core has support for filtering 1553 transfers. The filter options can be controlled by fields in the config-
uration structure givento gr 1553bm config_init().

23.2.1.6. Interrupt service

The BM core can interrupt the CPU on DMA errors and on Timer overflow. The DMA error is unmasked by the
driver and the Timer overflow interrupt is configurable. For the DMA error interrupt a custom handler may be
installed throughthegr 1553bm confi g_i ni t () function. On DMA error the BM logging will automatically
be stopped by acall togr 1553bm st op() from withinthe ISR of the driver.

23.2.2. Application Programming Interface
The BM driver API consists of the functionsin the table below.

Table 23.2. function prototypes

Prototype Description

void *gr1553bmopen(int mnor) | OpenaBM device by instance number. Returns a handle identifying the
specific BM device opened. The handle is given asinput parameter bmin
al other functions of the API

voi d gr1553bm cl ose(void *bm C|O$apreviou§y openaj BM device

int gri1553bm config_init(Configure the BM device driver BM log DMA-memory

void *bm
struct gr1553bmcfg *cfg)

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 185

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Prototype Description

int 3;335322_00'1” g_all oc(Configure the BM device driver and allocate BM log DMA-memory
struct gr1553bmcfg *cfg)

voi d gr1553bm config_free(void *bnfFree allocated memory

int griss3bmstart(void *bm Start BM logging, enables Interrupts

void gr1553bm stop(void *bm Stop BM logging, disablesinterrupts

voi dvgir $5*5gg]m_t i me(Get _1553 64-bit Time mai_ntai ned py the driver. T_he I_o_vvest 24-bi_ts are tak-
uint64_t *time) en directly from the BM timer register, the most significant 40-bits are tak-

en from a software counter.

int 3;?35322_3\/& I abl e(The current number of entriesin thelog isstored intonent ri es.
int *nentries)

int 3;12532? ead(Copy contents a maximum number (max) of entries from the BM ng to
struct gr1553bmentry *dst, |@USer provided data buffer (dst). The actual number of entries copied is
int *max) stored into max.

23.2.2.1. Data structures

Thegr 1553bm cf g data structure is used to configure the BM device and driver. The configuration parameters
are described in the table below.

struct gr1553bmconfig {
uint8 t tinme_resolution;
int time_ovf_irq;
unsigned int filt_error_options;
unsigned int filt_rtadr;
unsigned int filt_subadr;
unsigned int filt_nt;
unsi gned int buffer_size;
voi d *buffer_custom
bntopy_func_t copy_func;
voi d *copy_func_arg;
brisr_func_t dma_error _isr;
void *dma_error_arg;

s

Table 23.3. gr1553bm_config member descriptions.

M ember Description

time_resolution 8-hit time resolution, the BM will update the time according to this setting. 0 will make
the time tag be of highest resolution (no division), 1 will make the BM increment the time
tag once for two time ticks (div with 2), etc.

time ovf_irq Enable Time Overflow IRQ handling. Setting thisto 1 makes the driver to update the 64-
bit time by it self, it will use time overflow |RQ to detect when the 64-bit time counter
must be incremented. If set to zero, the driver expect the user to call gri553bm_time()
regularly, it must be called more often than the time overflows to avoid an incorrect time.

filt_error_options |Buserror log options:

bit0,4-31 = reserved, set to zero Bitl = Enables logging of Invalid mode code errors Bit2
= Enables logging of Unexpected Data errors Bit3 = Enables logging of Manchester/pari-
tyerrors

filt_rtadr RT Subaddress filtering bit mask, bit definition:

31: Enableslogging of mode commands on subadr 31 1..30: BitN enables/disables log-
ging of RT subadr N 0: Enables logging of mode commands on subadr 0

filt_mc Mode code Filter, iswritten into "BM RT Mode code filter" register, please see hardware
manual for bit declarations.

buffer_size Size of buffer in bytes, must be aligned to 8-byte boundary.

buffer_custom Custom BM log buffer location, must be aligned to 8-byte and be of buffer_size length. If

NULL dynamic memory allocation is used.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 186

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

M ember Description

copy_func Custom Copy function, may be used to implement a more effective/ custom way of copy-
ing the DMA buffer. For example the DMA log may need to processed at the same time
when copying.

copy_func_arg Optional Custom Data passed onto copy_f unc()

dma_error_isr Custom DMA error function, note that this function is called from Interrupt Context. Set
to NULL to disable this callback.

dma_error_arg COptiona Custom Datapassed ontodma_error _i sr()

struct gri553bmentry {
uint32_t tine;
uint32_t data;

s

Table 23.4. gr1553bm_entry member descriptions.

M ember Description
time Time of word transfer entry. Bit31=1, bit 30..24=0, bit 23..0=time
data Transfer status and data word
Bits Description
31 Zero
30..20 Zero
19 0=BusA, 1=BusB
18..17 Word Status: 00=0k, 01=Manch-
ester error, 10=Parity error
16 Word type: 0=Data, 1=Command/
Status
15..0 16-bit Data on detected on bus

23.2.2.2. gr1553bm_open

Opens a GR1553B BM device identified by instance number, mi nor . The instance number is determined by the
order in which GR1553B cores with BM functionality are found, the order of the Plug & Play.

A handleisreturned identifying the opened BM device, the handle is used internally by the driver, it isused asan
input parameter bmto all other functions that manipulate the hardware.

This function initializes the BM hardware to a stopped/disable level.

23.2.2.3. gr1553bm_close

Close and Stop a BM device identified by input argument bm previoudly returned by gr 1553bm open() .
23.2.2.4. gr1553bm_config_init

Configure the log DMA-memory for aBM device. The configuration parameters are stored in the location point-
ed to by cf g. The layout of the parameters must follow the gr 1553bm conf i g data structure, described in
Table 23.3.

This function will not allocate any memory. Replace this function call with gri553bm_config_alloc() if you want
the driver to allocate memory. If BM device is started or any of the data pointers are NULL, then this function
will return a negative result. On success zero is returned.

23.2.2.5. gr1553bm_config_alloc

Configure and allocate the log DMA-memory for a BM device. The configuration parameters are stored in the
location pointed to by cf g. The layout of the parameters must follow the gr 1553bm conf i g data structure,
described in Table 23.3.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 187

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

If BM deviceis started or memory allocation fails (in case of dynamic memory allocation), then this function will
return a negative result. On success zero is returned.

23.2.2.6. gr1553bm_config_free
Free allocated memory.
23.2.2.7. gr1553bm_start

Starts 1553 logging by enabling the core and enabling interrupts. The user must have configured the driver (log
buffer, timer, filtering, etc.) before calling this function.

After the BM has been started the configuration function can not be called.

On success this function returns zero, on failure a negative result is returned.

23.2.2.8. gr1553bm_stop

Stops 1553 logging by disabling the core and disabling interrupts. Further 1553 transfers will be ignored.
23.2.2.9. gr1553bm_time

This function reads the driver's internal 64-bit 1553 Time. The low 24-bit time is acquired from BM hardware,
the MSB is taken from a software counter internal to the driver. The counter is incremented every time the Time
overflows by:
e using "Time overflow" IRQ if enabled in user configuration
* by checking "Time overflow" IRQ flag (IRQ is disabled), it is required that user calls this function before
the next timer overflow. The software can not distinguish between one or two timer overflows. Thisfunction
will check the overflow flag and increment the driver internal time if overflow has occurred since last call.

This function update software time counters and store the current time into the address indicated by the argument
time.

23.2.2.10. gr1553bm_available

Copy up to max number of entries from BM log into the address specified by dst . The actual number of entries
read is returned in the location of max (zero when no entries available). The max argument isthusin/out. It is
important to read out thelog entriesin timeto avoid dataloss, thelog can be sized so that dataloss can be avoided.

Zero isreturned on success, on failure a negative number is returned.
23.2.2.11. gr1553bm_read

Copy up to max number of entries from BM log into the address specified by dst. The actual number of entries
read is returned in the location of max (zero when no entries available). The max argument is thus in/out. It is
important to read out thelog entriesin timeto avoid dataloss, thelog can be sized so that dataloss can be avoided.

Zero isreturned on success, on failure a negative number is returned.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 188

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

24. GR716 memory protection unit driver

24.1. Introduction

This section describes the driver used to control the two memory protection units (MEMPROT) available in
GR716.

24.1.1. User Interface
This section covers how the driver can be interfaced to an application to control the MEMPROT hardware.

Controlling the driver and device is done with functions provided by the driver prefixed with menpr ot _. All
driver functionstake adevice handle returned by menpr ot _open asthefirst parameter. All supported functions
and their data structures are defined in the driver's header filedr v/ menpr ot . h.

24.1.2. Features

» Global enable and disable
» Per-segment configuration
¢ Automatic locking and unlocking

24.1.3. Limitations

The GR716 master-to-APB grant interface is not directly supported by the driver. Register structures definitions
are available in the header file.

24.2. Driver registration

This driver uses the driver registration mechanism described in Chapter 10.

Table 24.1. Driver registration functions

Registration method Function

Automatic registration menprot _autoinit()
Register one device menprot _register()
Register many devices menprot _init()

24.3. Examples
Examples are availableinthesr ¢/ | i bdr v/ exanpl es directory in the BCC distribution.
24.4. Opening and closing device

A MEMPROT device must first be opened before any operations can be performed using the driver. The number
of devices registered to the driver can be retrieved using menpr ot _dev_count . A particular device can be
opened using menpr ot _open and closed menpr ot _cl ose. The functions are described below.

An opened device can not be reopened unlessthe deviceis closed first. When opening adevicethe deviceis marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal _| dst ub
from the OSAL. Protection is used by all MEMPROT devices on opening and closing. It is assumed that at most
one thread operates on one MEMPROT device at atime.

During opening of a MEMPROT device the following steps are taken:
» Thedeviceis marked opened to protect the caller from other users of the same device.
 Internal data structures areinitialized.
e Thedeviceislocked using the PCR. PROT field.

The example below printsthe number of MEMPROT devicesto screen then opensand closesthe first MEMPROT
device present in the system.
int print_nmenprot_devices(void)

{

struct menprot_priv *device;

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 189

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

int count;

count = nenprot_dev_count();
printf ("% MEMPROT device(s) present\n", count);

devi ce = nenprot_open(0);
if (!device) {

return -1; /* Failure */
}

nenpr ot _cl ose(device);
return 0; /* success */

}

Table 24.2. menpr ot _dev_count function declaration

Proto |i nt nenprot_dev_count (voi d)

About |Retrieve number of devicesregistered to the driver.

Return |int. Number of devices registered in system, zero if none.

Table 24.3. menpr ot _open function declaration

Proto |struct nmenprot_priv *menprot_open(int dev_no)

About |OpensaMEMPROT device. The device isidentified by index. The returned valueis used as input ar-
gument to all functions operating on the device.

Param |dev_no [IN] Integer

Device identification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by menpr ot _dev_count .

Return |Pointer. Status and driver'sinternal device identification.

NULL Indicates failure to open device. Failsif device semaphore fails or device already is
open.

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which MEMPROT device.

Table 24.4. menpr ot _cl ose function declaration

Proto |int nenprot_cl ose(struct nenprot_priv *d)

About |Closesa previously opened device.

Param |d [IN] pointer

Deviceidentifier. Returned from menpr ot _open.
Return |int. DRV_OK

Memory protection configuration is not changed by the open and close functions. In particular, memory protection
isnot disabled by close.

24.5. Operation mode
The driver always operates in one of two modes: started or stopped,

Thistrandates directly to whether the memory protection unit is enabled or disabled.
» Sarted isequivaent to PCR. EN=1. It means that the memory protection unit is enabled.
* Stopped is equivalent to PCR. EN=0. It means that the memory protection unit is disabled.

All API functions are available in both operation modes.
24.5.1. Starting and stopping

Themenpr ot _start () function places the driver in started mode. The function menpr ot _st op() makes
the driver core leave the started mode and enter stopped mode. menpr ot _i sst art ed() isused to determine
the driver operation mode.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 190

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 24.5. menpr ot _st art function declaration

Proto |int nenprot_start(struct nenprot_priv *priv)
About |Start driver.

Param |d [IN] pointer

Device handle returned by menpr ot _open.

Return |int.
Value Description
DRV_OK Device was started by the function call.
DRV_BUSY Device aready in started mode. Nothing performed.

Table 24.6. menpr ot _st op function declaration

Proto |int nmenprot_stop(struct nmenprot _priv *priv)

About |Stop driver.

Param |d [IN] pointer
Device handle returned by menpr ot _open.

Return |int.
Value Description
DRV_OK Device was stopped by the function call.
DRV_BUSY Device already in stopped mode. Nothing performed.

Table 24.7. menpr ot _i sst ar t ed function declaration

Proto |int nmenprot_isstarted(struct nenmprot_priv *d)
About |Get current MEMPROT driver running state

Param |d [IN] Pointer

Device identifier. Returned by menpr ot _open.

Return |int. Status

Value Description

0 Stopped

1 Started
24.6. Reset

Opening the driver does not change any of the units configuration. To reset the memory protection unit to aknown
accept-all state, the function menpr ot _r eset () can be used.

Table 24.8. menpr ot _r eset function declaration

Proto |int nenprot_reset(struct nenprot_priv *d)

About |Reset memory protection unit.

This function disables the unit and disables al segment configurations.
Param |d [IN] Pointer

Device identifier. Returned by menpr ot _open.

Return |int. DRV_OK

24.7. Segment configuration

24.7.1. Number of segments

The number of implemented segments can be retrieved with the function nenpr ot _nseg() .

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 191

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 24.9. menpr ot _nseg function declaration

Proto |int nenprot_nseg(struct menmprot_priv *d)

About |Retrieve number of implemented memory segments for memory protection device.
Param |d [IN] Pointer
Deviceidentifier. Returned by menpr ot _open.

Return |int. Number of memory segments supported. Thisisthe value of the constant register field
PCR. NSCEG.

24.7.2. Data structures

struct menprot _segi nf o isused by the application to describe individual memory protection segments.
The structure isavailablein dr v/ menpr ot . h and describes how the driver shall configure the segment.

/* User representation of one nenory protection segnent */
struct nenprot_segi nf of

uintptr_t start;

uintptr_t end;

uint32_t g;

int en;

b
Table 24.10. memprot_seginfo data structure declaration

start Start address

end End address

g Exclusive writegrant G . Thisisabit mask. See GR716-DS-UM for bit definitions of G .
Bit Description

Q) - Grant master 0 exclusive write access.

1 Gl - Grant master 1 exclusive write access.

i G - Grant master i exclusive write access.

en Disable or enable segment.
Value Description
0 Disable this segment.
1 Enable this segment.
24.7.3. Set

Anindividual memory segment can be configured by calling the function menpr ot _set () with auser supplied
asstruct menprot_segi nf o parameter. The following example configures segment 2.

struct menprot_seginfo si;

si.start = 0x80004000;
si . end = 0x800040ff;
si.g =1 << 2;
si.en = 1;

menpr ot _reset (dev);
menpr ot _set (dev, 2, &si);
menprot _start (dev);

For any segment configuration to be in effect, the device must be in started operation mode.

Closing the driver does not cancel the configured memory protections.

Table24.11. menpr ot _set function declaration

Proto |int nenprot_set(struct menprot_priv *d, int segment, const struct
menpr ot _segi nfo *segi nf o)

About | Configure amemory protection segment.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 192

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

The information contained in the segi nf o isinstalled in the hardware registers corresponding to the
segnent number.

Param |d [IN] Pointer
Deviceidentifier. Returned by menpr ot _open.

Param |segment [IN] Integer
Target segment number.

Must bein therange O to nenpr ot _nseg() - 1.
Param |segi nf o [IN] Pointer

User representation of segment configuration.
Return |int. DRV_OK

24.7.4. Get

Memory protection segments can be read back from hardwareintoast r uct nenpr ot _segi nf o record with
the function menpr ot _get () . Everything in the record is qualified with the en field.

Protection segments are not affected when opening the driver which means that the previous configuration can
be read out.

Table 24.12. menpr ot _get function declaration

Proto |int nenprot_get(struct menprot_priv *d, int segment, struct
menpr ot _segi nfo *segi nf o)

About | Read back memory protection segment configuration from hardware.

The configuration contained in the hardware registers corresponding segment indexed by segnent is
read back and written to the segi nf o.

Param |d [IN] Pointer

Deviceidentifier. Returned by menpr ot _open.

Param |segmrent [IN] Integer
Target segment number.

Must bein therange 0 to nenpr ot _nseg() - 1.
Param |segi nf o [OUT] Pointer

User representation of segment configuration.
Return |int. DRV_OK

24.7.4.1. Example

The following example function pri nt al | () printsinformation on all memory protection segment of a partic-
ular device. In additiontotheen field, i sst art ed() canbeused asaglobal qualifier to determineif asegment
isin effect.

static void printsi(const struct nenprot_seginfo *si)
{
printf(" start
printf(" end
printf(" g
printf(" en

%98x\ n", (unsigned) si->start);

%98x\ n", (unsigned) si->end);

%08x\ n", (unsigned) si->g);

% (%)\n", si->en, si->en ? "enabled" : "disabled");

}

void printall(struct nenprot_priv *dev)
{
const int nseg = menprot_nseg(dev);
for (int i =0; i < nseg; i++) {
struct menprot_seginfo si;
printf("SEGVENT %\ n", i);

nmenprot _get (dev, i, &si);
printsi(&si);
puts("");
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 193

https://www.frontgrade.com/gaisler

rRONTGRADCE

Gaisler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 194

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

25. Memory scrubber

25.1. Introduction
This section describes the Memory Scrubber (MEM SCRUB) driver for SPARC/LEON processors.
25.1.1. Hardware Support

The MEMSCRUB core hardware interface is documented in the GRIP Core User's manua. The MEMSCRUB
core is used to monitor the memory AHB bus and can be programmed to scrub a memory area.

25.1.2. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the driver source tree
src/libdrv.

Table 25.1. MEMSCRUB driver source location

L ocation Description
src/include/drv/ menscrub. h MEMSCRUB user interface definition
src/ menscrub MEMSCRUB driver implementation

25.1.3. Examples

There is an example available that uses the MEMSCRUB driver to scrub a memory area and log the different
events. The exampleis part of the driver distribution, it can be found under exanpl es/ nenscr ub.

25.2. Software design overview
The driver provides afunction interface, an AP, to the user.

The API is not designed for multi-threadding, i.e. multiple threads operating on the driver independently. The
driver does not contain any lock or protection for SMP environments. Changing the MEM SCRUB configuration
is not intended to be done extensively at runtime or independently of the rest of the system, since it usualy has
a system-level impact. Therefore the user must take care of any impact that the different actions might have on
other parts of the system (such asthreads, CPUs, DMAS, ...).

25.2.1. Driver usage

The driver provides aset of functions that allow to start and stop the scrubber in different modes. Thefirst stepis
to setup the memory range (or memory ranges) in which the scrubber is going to act (see Section 25.3.3).

After setting up the range we can start the scrubber in one of the three modes available (see Section 25.3.4):

« Init mode: Initialize the memory area.

¢ Scrub mode: Scrub the memory area.

« Regen mode: Regenerate the memory area. Similar to scrub mode, but has an optimized access pattern for
correcting many errors.

Note that scrub and regen mode can be changed on the fly.
The driver provides functions to check if the scrubber is active and to stop it (see Section 25.3.4).

When dealing with errors, the drivers provides two different interfaces:

* Interrupts (see Section 25.3.6): Allowsthe user to install an Interrupt Service Routine (1SR) that will be exe-
cuted whenever an error exceeds its corresponding threshold. Also the MEM SCRUB core allows to generate
an interrupt when its done.

* Polling (see Section 25.3.7): Allows the user to poll the error status to check if an error have occurred.

Only one of these interfaces can be used at agiven time.

The different errors that the MEM SCRUB can report are:

* AHB correctable error.
* AHB uncorrectable error.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 195

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

« Scrubber run count errors.
» Scrubber block count errors.

There are functions that allow to configure the error count thresholds for each type of error individualy (see
Section 25.3.5). When the error count for a certain type exceeds the threshold, the error status is updated and an
interrupt is generated. If athreshold is disabled, the error status is not updated and no interrupt is generated.

25.3. Memory scrubber user interface

25.3.1. Return values

MEMBCRUB_ERR_OK
MEMBCRUB_ERR_El NVAL
MEMBCRUB_ERR_ERROR

All the driver function calls return the following values when an error occurred:
e MEMSCRUB_ERR _OK - Successful execution.
« MEMSCRUB_ERR_EINVAL - Invalid input parameter. One of the input values checks failed.
« MEMSCRUB_ERR _ERROR - Internal error. Can have different causes.

25.3.2. Opening and closing device

A MEMSCRUB device must first be opened before any operations can be performed using the driver. The number
of devices registered to the driver can be retrieved using nenscr ub_dev_count . A particular device can be
opened using nenscr ub_open and closed nenscr ub_cl ose. The functions are described below.

An opened device can not be reopened unlessthedeviceisclosed first. When opening adevice the deviceis marked
opened by the driver. This procedure is thread-safe by protecting from other threads by using osal _| dst ub
fromthe OSAL. Protectionisused by all MEMSCRUB devices on opening and closing. It is assumed that at most
one thread operates on one MEM SCRUB device at atime.

During opening of a MEMSCRUB device the following steps are taken:
» Thedeviceis marked opened to protect the caller from other users of the same device.
¢ Internal data structures are initialized.
e Error and interrupt statusis cleared.

The example below prints the number of MEM SCRUB devices to standard output. It then opens and closes the
first MEM SCRUB device present in the system.

int print_menscrub_devi ces(void)

{
struct menscrub_priv *device;
int count;

count = nenscrub_dev_count ();
printf ("% MEMPROT device(s) present\n", count);

devi ce = nenmscrub_open(0);
if (!device) {

return -1; /* Failure */
}

nenscrub_cl ose(device);
return 0; /* success */

}

Table 25.2. menscr ub_dev_count function declaration

Proto |int nemscrub_dev_count (voi d)

About | Retrieve number of devicesregistered to the driver.

Return |int. Number of devices registered in system, zero if none.

Table 25.3. menscr ub_open function declaration

‘Proto ‘struct menscrub_priv *nenscrub_open(int dev_no)

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 196

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

About |OpensaMEMSCRUB device. The deviceisidentified by index. The returned value is used as input
argument to all functions operating on the device.
Param |dev_no [IN] Integer
Deviceidentification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by menscrub_dev_count.
Return |Pointer. Status and driver'sinternal device identification.
NULL Indicates failure to open device. Failsif device semaphore fails or device already is
open.
Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which MEMPROT device.
Table 25.4. renscr ub_cl ose function declaration
Proto |int nemscrub_cl ose(struct menscrub_priv *d)
About |Closes a previously opened device.
Param |d [IN] pointer
Deviceidentifier. Returned from menscr ub_open.
Return |int. MEMSCRUB_ERR_OK

Hardware configuration is not changed by the menscr ub_open() function, apart from clearing the error and

interrupt status at open. menscr ub_cl ose() does not change the current hardware configuration.
25.3.3. Configuring the memory range

int menmscrub_range_set(struct memscrub_priv *priv, uint32_t start, uint32_t end)

int menmscrub_range_get(struct memscrub_priv *priv, uint32_t * start, uint32_t * end)

int menmscrub_secondary_range_set(struct memscrub_priv *priv, uint32_t start, uint32_t end)

int menmscrub_secondary_range_get(struct memscrub_priv *priv, uint32_t * start, uint32_t * end)

int menmscrub_scrub_position(struct menmscrub_priv *priv, uint32_t * position)

Thedriver uses these functions to setup the primary and secondary memory ranges of the MEM SCRUB core. The

scrubber

will act on the range from address st art to end, both inclusive.

The position function shows the actual position of the MEM SCRUB whithin the memory range.

These functions return a negative value if something went wrong, as explained in Section 25.3.1. Otherwise, the

function returns MEM SCRUB_ERR_OK when successful.
Table 25.5. menscr ub_r ange_set function declaration
Proto |i nt menscrub_range_set(struct menscrub_priv *priv, uint32_t start,
uint32 t end)
About | Set the primary memory range for the MEMSCRUB core. The range is defined by the memory ad-
dressesst art and end, both inclusive. See Section 25.3.3.
Param (st art [IN] Integer
32-hit start address. The address hits below the burst size alignment are constant ‘0'.
Param |end [IN] Integer
32-bit end address. The address bits below the burst size alignment are constant ‘1’.
Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.
Table 25.6. menscr ub_r ange_get function declaration
Proto |int nenmscrub_range_get(struct menscrub _priv *priv, uint32_t *
start, uint32 t * end)
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 197

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

About |Get the primary memory range for the MEM SCRUB core. The range is defined by the memory ad-
dressesst art and end, both inclusive. See Section 25.3.3.

Param |st art [IN] Pointer

Pointer to the 32-bit start address. The address bits below the burst size alignment are constant ‘0'.
Param |end [IN] Pointer

Pointer to the 32-bit end address. The address bits below the burst size alignment are constant *1'.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.7. menmscr ub_secondary_r ange_set function declaration

Proto |int nemscrub_secondary_range_set(struct nmenscrub_priv *priv,
uint32_t start, uint32_t end)

About | Set the primary memory range for the MEM SCRUB core. The range is defined by the memory ad-
dressesst art and end, both inclusive. See Section 25.3.3.

Param (st art [IN] Integer
32-hit start address. The address bits below the burst size alignment are constant ‘0’.
Param |end [IN] Integer

32-bit end address. The address bits bel ow the burst size alignment are constant ‘1.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.8. renscr ub_secondary_range_get function declaration

Proto |int nenmscrub_secondary range_get(struct nenscrub_priv *priv,
uint32 t * start, uint32_t * end)

About | Get the secondary memory range for the MEMSCRUB core. The range is defined by the memory ad-
dressesst art and end, both inclusive. See Section 25.3.3.

Param |start [IN] Pointer

Pointer to the 32-bit start address. The address bits below the burst size alignment are constant ‘0'.
Param |end [IN] Pointer

Pointer to the 32-bit end address. The address bits below the burst size alignment are constant *1'.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.9. menscr ub_scrub_posi ti on function declaration

Proto |int nemscrub_scrub_position(struct nmenscrub_priv *priv, uint32_t *
position)

About | Get the position of the scrubber within the memory range. See Section 25.3.3.
Param |posi ti on [IN] Pointer
Pointer to the 32-bit position address.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

25.3.4. Starting/stoping different modes.

int memscrub_init_start(struct memscrub_priv *priv, uint32_t value, uint8_t delay, int options)
int memscrub_scrub_start(struct memscrub_priv *priv, uint8_t delay, int options)
int memscrub_regen_start(struct memscrub_priv *priv, uint8_t delay, int options)
int memscrub_stop(struct menscrub_priv *priv)

int menmscrub_active(struct menscrub_priv *priv)

The driver uses these functions to start or stop the different modes of the MEM SCRUB core:

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 198

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

« Init mode: Initialize the memory area.
e Scrub mode: Scrub the memory area.

« Regen mode: Regenerate the memory area. Similar to scrub mode, but has an optimized access pattern for
correcting many errors.

All the modes act on the configured memory range (see Section 25.3.3).
The active functions checks if the scrubber is currently running.

These functions return a negative value if something went wrong, as explained in Section 25.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 25.10. nenscrub_i nit _start function declaration

Proto |int nmemscrub_init_start(struct memscrub_priv *priv, uint32_t value,
uint8 t delay, int options)

About |Start theinitialization mode of the scrubber. See Section 25.3.4.
Param |val ue [IN] Integer

32-bit value to be written into each memory position.

Param |del ay [IN] Integer
8-bit delay value. Processor cycles delay time between processed blocks.

Param |opti ons [IN] Integer

Options.
Value Description
MEMSCRUB_OPTIONS_INTERRUPTDONE_ENABLE Enable interrupt when done.
MEMSCRUB_OPTIONS INTERRUPTDONE_DISABLE Disable interrupt when done
(default).
MEMSCRUB_OPTIONS _EXTERNALSTART_ENABLE Enable external start.
MEMSCRUB_OPTIONS _EXTERNALSTART_DISABLE Disable external start (de-
fault).
MEMSCRUB_OPTIONS_LOOPMODE_ENABLE Enable loop mode.
MEMSCRUB_OPTIONS LOOPMODE_DISABLE Disable loop mode (default).
MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_ENABLE |Enable secondary memory
range.
MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_DISABLE |Disable secondary memory
range (default).

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.11. menscr ub_scrub_st art function declaration

Proto |int nmemscrub_scrub _start(struct nenscrub_priv *priv, uint8_ t delay,
int options)

About | Start the scrubbing mode of the scrubber. See Section 25.3.4.
Param |del ay [IN] Integer

8-bit delay value. Processor cycles delay time between processed blocks.

Param |opti ons [IN] Integer

Options.
Value Description
MEMSCRUB_OPTIONS INTERRUPTDONE_ENABLE Enable interrupt when done.
MEMSCRUB_OPTIONS INTERRUPTDONE_DISABLE Disable interrupt when done
(default).
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 199

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

MEMSCRUB_OPTIONS EXTERNALSTART _ENABLE Enable external start.
MEMSCRUB_OPTIONS EXTERNALSTART _DISABLE Disable external start (de-
fault).
MEMSCRUB_OPTIONS L OOPMODE_ENABLE Enable loop mode.
MEMSCRUB_OPTIONS _LOOPMODE_DISABLE Disable loop mode (default).
MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_ENABLE |Enable secondary memory
range.
MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_DISABLE |Disable secondary memory
range (default).
Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.12. mnenscr ub_r egen_st art function declaration

Proto |int nemscrub_regen _start(struct nenscrub_priv *priv, uint8_t delay,
int options)
About | Start the regeneration mode of the scrubber. See Section 25.3.4.
Param |del ay [IN] Integer
8-hit delay value. Processor cycles delay time between processed blocks.
Param |opti ons [IN] Integer
Options.
Value Description
MEMSCRUB_OPTIONS INTERRUPTDONE_ENABLE Enable interrupt when done.
MEMSCRUB_OPTIONS INTERRUPTDONE_DISABLE Disable interrupt when done
(default).
MEMSCRUB_OPTIONS EXTERNALSTART_ENABLE Enable external start.
MEMSCRUB_OPTIONS EXTERNALSTART_DISABLE Disable external start (de-
fault).
MEMSCRUB_OPTIONS L OOPMODE_ENABLE Enable loop mode.
MEMSCRUB_OPTIONS L OOPMODE_DISABLE Disable loop mode (default).
MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_ENABLE |Enable secondary memory
range.
MEMSCRUB_OPTIONS_SECONDARY_MEMRANGE_DISABLE |Disable secondary memory
range (default).
Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.13. nenrscr ub_st op function declaration

Proto |int nemscrub_stop(struct menscrub_priv *priv)
About | Stop the scrubber. See Section 25.3.4.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.14. menscr ub_act i ve function declaration

Proto |int nemscrub_active(struct nenscrub_priv *priv)

About |Returns the active status of the scrubber. When the scrubber is active, it returns a non-zero positive
value. When the scrubber is stopped, it returns zero. See Section 25.3.4.

Return |int. Positive value when successful. Otherwise, returns a negative value if something went wrong, as
explained in Section 25.3.1.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 200

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
25.3.5. Setting up error thresholds

int menscrub_ahberror_setup(struct menscrub_priv *priv, int uethres, int cethres, int options)
int menscrub_scruberror_setup(struct nemscrub_priv *priv, int blkthres, int runthres, int options)

Thedriver usesthese functionsto setup the thresholds for ahb and scrub errors respectively. Thefollowing thresh-
olds can be enabled or disabled:

e AHB correctable error.

* AHB uncorrectable error.

» Scrubber run count errors.

¢ Scrubber block count errors.

If athreshold is disabled, no error status or interrupt will be generated for that type of error. If athreshold is
enabled, the error status or interrupt will be triggered when the error count exceeds the threshold value.

These functions return a negative value if something went wrong, as explained in Section 25.3.1. Otherwise, the
function returns MEMSCRUB_ERR_OK when successful.

Table 25.15. menscr ub_ahber r or _set up function declaration

Proto |int nemscrub_ahberror_setup(struct nmenscrub_priv *priv, int
uethres, int cethres, int options)

About | Setup the AHB correctable and uncorrectable error thresholds for the MEM SCRUB core. See Sec-
tion 25.3.5.

Param |uet hr es [IN] Integer

AHB uncorrectable error threshold value (only 8 LSB used).
Param |cet hr es [IN] Integer

AHB correctable error threshold value (only 10 LSB used).
Param |opti ons [IN] Integer

Options.

Value Description

MEMSCRUB_OPTIONS AHBERROR_CORTHRES ENABLE Enable AHB correctable er-
ror threshold.

MEMSCRUB_OPTIONS AHBERROR_CORTHRES DISABLE Disable AHB correctable
error threshold (default).

MEMSCRUB_OPTIONS AHBERROR_UNCORTHRES ENABLE |Enable AHB uncorrectable
error threshold.

MEMSCRUB_OPTIONS_ AHBERROR_UNCORTHRES DISABLE |Disable AHB uncorrectable
error threshold (default).

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.16. nenscr ub_scr uberror _set up function declaration

Proto |i nt nemscrub_scruberror_setup(struct nemscrub_priv *priv, int blk-
thres, int runthres, int options)

About | Setup the scrubber run and block count error thresholds for the MEM SCRUB core. See Sec-
tion 25.3.5.

Param |bl kt hr es [IN] Integer

Block count error threshold value (only 8 LSB used).
Param |runt hr es [IN] Integer

Run count error threshold value (only 10 LSB used).
Param |opti ons [IN] Integer

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 201

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Options.
Value Description
MEMSCRUB_OPTIONS_SCRUBERROR_RUNTHRES ENABLE Enable run count error
threshold.
MEMSCRUB_OPTIONS SCRUBERROR_RUNTHRES DISABLE Disable run count error
threshold (default).
MEMSCRUB_OPTIONS_SCRUBERROR_BLOCKTHRES ENABLE |Enable block count error
threshold.
MEMSCRUB_OPTIONS_SCRUBERROR_BLOCKTHRES DISABLE |Disable block count error
threshold (default).
Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

25.3.6. Registering an ISR

typedef void (*nenscrub_isr_t) (
void *arg,
ui nt 32_t ahbaccess,
ui nt 32_t ahbst at us,
uint32_t scrubstatus

)
int memscrub_isr_register(struct menmscrub_priv *priv, menmscrub_isr_t isr, void * data)
int menmscrub_isr_unregister(struct nmenscrub_priv *priv)

The driver uses these functionsto register and unregister an ISR for error interrupts. When registering an ISR, in-
terruptsare enabled. To set the error thresholdsthat trigger interrupts use the functions described in Section 25.3.5.

These functions return a negative value if something went wrong, as explained in Section 25.3.1. Otherwise, the
function returns MEM SCRUB_ERR_OK when successful.

Table 25.17. menscr ub_i sr_regi st er function declaration

Proto |int nemscrub_isr_register(struct menmscrub_priv *priv,
menscrub_isr_t isr, void * arg)

About |Registersan ISR for the MEM SCRUB core. See Section 25.3.6.
Param |i sr [IN] Pointer

The ISR function pointer.

Param |ar g [IN] Pointer

The ISR argument pointer.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

Table 25.18. menscr ub_i sr_unr egi st er function declaration

Proto |int nemscrub_isr_unregister(struct nenscrub_priv *priv)
About |Unregistersan ISR for the MEM SCRUB core. See Section 25.3.6.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

25.3.7. Polling the error status

int memscrub_error_status(struct menmscrub_priv *priv, uint32_t * ahbaccess, uint32_t * ahbstatus, uint32_t * scrubstatus)

The driver uses this function to poll the error status and clear the error status in case an error isfound. To set the
error thresholds that trigger error status use the functions described in Section 25.3.5.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 202

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

This function returns a negative value if something went wrong, as explained in Section 25.3.1. Otherwise, the
function returns MEM SCRUB_ERR_OK when successful.

Table 25.19. mnenscr ub_error _st at us function declaration

Proto |int nemscrub_error_status(struct nmenmscrub _priv *priv, uint32_t *
ahbaccess, uint32_t * ahbstatus, uint32_t * scrubstatus)

About |Poll the state of the error status registers. Returns the status registers and the AHB failing access reg-
ister. If aerror has been detected the function automatically clears the status in order to catch new er-
rors. See Section 25.3.7.

Param |ahbaccess [OUT] Pointer

The value pointed will be updated with the AHB failing access.

Param |ahbst at us [OUT] Pointer

The value pointed will be updated with the AHB error status register content.
Param |scr ubst at us [OUT] Pointer

The value pointed will be updated with the scrub error status register content.

Return |int. MEMSCRUB_ERR_OK when successful. Otherwise, returns a negative value if something went
wrong, as explained in Section 25.3.1.

25.4. APl reference

This section lists al functions part of the MEMSCRUB driver API, and in which section(s) they are described.
The API is also documented in the source header file of the driver, see Section 25.1.2.

Table 25.20. MEMSCRUB function reference

Prototype Section

int nmenscrub_range _get(struct menscrub_priv *priv, uint32_t *start, (2533
uint32_t *end)

int nenscrub_range_set(struct nenscrub_priv *priv, uint32_t start, 25.3.3
uint32_t end)

i nt nmenscrub_secondary_range_get (struct menmscrub_priv *priv, 25.3.3
uint32_t *start, uint32_t *end)

i nt nmenscrub_secondary_range_set (struct menmscrub_priv *priv, 25.3.3
uint32_t start, uint32_t end)

int nmenscrub_scrub_position(struct nmenscrub _priv *priv, uint32_t 25.3.3
*posi tion)

int nenscrub_init_start(struct nenscrub_priv *priv, uint32_t value, [2534
uint8 t delay, int options)

int menscrub_scrub_start(struct nmenmscrub _priv *priv, uint8 t delay, [2534
i nt options)

int menscrub_regen_start(struct menmscrub_priv *priv, uint8_t delay, [2534
i nt options)

int nmenscrub_stop(struct nmenmscrub_priv *priv) 2534
int nenscrub_active(struct nmenscrub_priv *priv) 25.34
i nt nmenscrub_ahberror_setup(struct menscrub_priv *priv, int 25.35

uethres, int cethres, int options)

i nt menmscrub_scruberror_setup(struct menmscrub_priv *priv, int blk- [2535
thres, int runthres, int options)

int nmenscrub_isr_register(struct nenscrub_priv *priv, 25.3.6

menscrub_isr_t isr, void * data)

int nenscrub_isr_unregister(struct menscrub_priv *priv) 25.3.6
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 203

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Prototype Section

int menscrub_error_status(struct nenmscrub_priv *priv, uint32_t *ah- (2537
baccess, uint32_t *ahbstatus, uint32_t *scrubstatus)

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 204

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

26. SpaceWire Router Driver

26.1. Introduction

The SpaceWire router connects external SpaceWire ports and internal AMBA ports together using anon-blocking
switch matrix which can connect any input port to any output port. A single routing table is used for the whole
router. This chapter describes the API used configure the router. The AMBA port interfaces are controlled by the
SpaceWire driver (Chapter 11).

26.2. Driver sources

The driver sources and definitions are listed in Table 26.1. The path is given relative to the driver source tree at
src/libdrv.

Table 26.1. SpaceWire Router driver source location

L ocation Description
src/include/drv/grspwrouter.h SpaceWire Router driver interface
src/grspwrouter SpaceWire Router driver implementation
26.3. Routing

Packets can enter into the router from either the external SpaceWire ports or theinternal AMBA ports. The router
looks at the first byte of the packet, the destination address, to determine where the package shall be routed. If it
is below 32, it is treated as a physical address and will be routed to either a SpaceWire port, an AMBA port, or
be spilled if there is no port available at the address. For logical addresses (32 and above), the router needs to be
provided route information to know to which port the packet shall be routed.

It is also possible to configure the router to do static routing, where all incoming packets on a specific port are
routed to a specific output port, regardless of the destination address in the packet.

When routing a packet, the router can be instructed to drop the address byte (called header deletion). This can for
example be used to do path addressing, where the packet starts with the entire path through the network and the
first address in the path is dropped after every link to reveal the next step in the path.

26.4. Register and access driver
This driver uses the driver registration mechanism described in Chapter 10.

Table26.2. gr spwr out er _aut oi ni t function declaration

Name grspwrouter_autoinit()

Proto int grspwouter_autoinit()

About Register SpaceWire router devices using Plug-n-Play

Registers any available SpaceWire router devices and returns the number of devices found.

Return |i nt - The number of devicesfound and registered

Table 26.3. gr spwr out er _r egi st er function declaration

Name grspwrouter _register()
Proto drvret grspwouter_register(struct grspwouter_devcfg * devcfg)

About Manually register a single SpaceWire router device

The configuration must include the location of the register area and the interrupt number in de-
vcf g- >regs. Thedevcf g- >dev member is used be the driver to store information. The memo-
ry used by thedevcf g argument must never be freed.

Param devcf g - [in] - Settings defining the router device

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 205

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name grspwrouter _register()

Return |drvret - DRV_OK on success

When the driver has been registered a device can be accessed by calling gr spwr out er _open() . Thefunction
needs to be provided the system and SpaceWire frequency (in MHz) to be able to configure the scalers used to set
up the correct link rate used for initialisation and optional timeouts. The function will configure the timer prescaler
so that all router timers operate at 10KHz. Thisis doneto be able to set reasonable timeout values using the API.

Table 26.4. gr spwr out er _open function declaration

Name grspwrouter _open()

Proto grspwouter_dev * grspwouter_open(uint32_t index, uint32_t
spw freq, int32 t sys freq)

About Initialize handle to SpaceWire router driver
This function returns a handle to SpaceWire router driver for the device specified by i ndex.

Thespw_f r eq argument shall specify the SpaceWire clock frequency (in MHz) provided to the
router. Thisvalue is used to configure the initialization bit rate for the all the SpaceWirelinks. It is
alsoused by gr spwrout er _port _|ink_start tosettherun state speed of individual links.
Use the value 0 to keep the existing value.

Thesys_freq arguments shall specify the system clock frequency (in MHz). Thisvalueis used to
configure the various timeout functionality provided by the router. This function will set the timer
scaler so that all timers run at 10KHz. Use the value 0 to keep the existing value.

For the GR740 the default internal SpaceWire clock frequency is 400MHz. This corresponds to an
external clock frequency for aSPW_CLK of 50 MHz if the default PLL configuration of 8x is used.

Param i ndex - Index of the SpaceWire router device

Param spw_f r eq - SpaceWire clock frequency

Param sys_freq - System clock frequency

Return gr spwr out er _dev *
e grspw out er _dev - on success
e NULL - if no device with the provided index, or if already opened

Table 26.5. gr spwr out er _cl ose function declaration

Name grspwrouter _close()

Proto drvret grspwouter_close(grspwouter_dev * dev)

About Closes a previously opened device

The provided handle must have been previously opened by gr spwr out er _open() .
Param dev - [in] - A valid device handle
Return drvret

¢ DRV_CX - on success
* DRV_I NVAL - if not previously opened by gr spwr out er _open

26.5. Setup routing table

The router looks at the address of each incoming packet and uses that as an index in a routing table with
information on where to route the packet. The routing information for a specific address is set using the
grspw out er_route_set () .Itispossibleto specify one or multiple target ports.

For each routeit is possible to set the following options:
» Enable/disable header deletion

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 206

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

« Spill or wait if output port'slink interface is not in run-state
e Set normal / high priority
« Enable packet distribution or group adaptive

Table 26.6.

gr spwr out er _rout e_set function declaration

Name

grspwrouter_route set()

Proto

drvret grspwouter _route set(grspwouter _dev * dev, uint8 t ad-
dress, uint32 t to _mask, bool header deletion, bool spill _packet,
uint32 t options)

About

Set up aroute for incoming packets based on destination address

Incoming packets with the destination addressaddr ess will be routed to the first available output
port of the ones specified inthet o_mask. If packet distribution has been enabled the same packet
will be sent on all specified output ports.

Thet o_mask argument can be built using a mask where each bit index corresponds to the
SpaceWire port with the same index. The GRSPWROUTER_PORT() define can be used for this:

to_mask = GRSPWROUTER PORT(3) | GRSPWROUTER PORT(4)

On the GR740 the following defines can be used:
+ AMBA port 0 (GRSPWROUTER_GR740_AMBA_0)
« AMBA port 1 (GRSPWROUTER_GR740_ AMBA _1)
« AMBA port 2 (GRSPWROUTER_GR740 AMBA_2)
« AMBA port 3 (GRSPWROUTER_GR740 AMBA_3)
» SpaceWire port 1 (GRSPWROUTER_GR740_SPW_1)
» SpaceWire port 2 (GRSPWROUTER_GR740_SPW_2)
» SpaceWire port 3 (GRSPWROUTER_GR740_SPW _3)
* SpaceWire port 4 (GRSPWROUTER_GR740_SPW_4)
 SpaceWire port 5 (GRSPWROUTER_GR740_SPW _5)
 SpaceWire port 6 (GRSPWROUTER_GR740_SPW_6)
 SpaceWire port 7 (GRSPWROUTER_GR740_SPW _7)
» SpaceWire port 8 (GRSPWROUTER_GR740_SPW_8)

Packets sent to the AMBA ports are handled by the SpaceWire driver.

The router can be configured to automatically remove the first byte of the packet, the byte that con-
tains the destination address. Thisis called header deletion.

If the output port'slink interface is not in run-state the router can be ordered to wait until thelink is
up or to spill the packet.

The opt i ons argument can be built by or:ing the following defines:
 Set high priority when more than one packet is competing for the same output port
(GRSPWROUTER_ROUTE_PRI ORI TY)
 Enable packet distribution (default group adaptive) (GRSPWROUTER _PACKET DI ST)

Param

dev - [in] - Valid router device handle

Param

addr ess - Route incoming packets with this destination address

Param

t o_nmask - Route packets to these output ports

Param

header _del et i on - Remove thefirst byte of the packet when routing it

Param

spi I | _packet - Spill the packet if the output port's link interface is not in run-state

Param

opti ons - Enable high priority (GRSPWROUTER_ROUTE_PRIORITY) and/or packet distribu-
tion (GRSPWROUTER_PACKET_DIST)

Return

drvret
¢ DRV_CX - on success

BCC-UM

Jul 2023,

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Version 2.2.4 207

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name grspwrouter_route set()
 DRV_I NVAL - if addressisO

Table 26.7. gr spwr out er _r out e_di sabl e function declaration

Name grspwrouter_route disable()

Proto drvret grspwouter_route disable(grspwouter_dev * dev, uint8_t
address)

About Disable aroute for incoming packets based on destination address

PrSTATUS the router from routing packets with a specific destination address. Only logical ad-
dresses can be blocked. Packets with a physical destination address will still be routed.

Param dev - [in] - Valid router device handle
Param |addr ess - Packets with thislogical destination address will not be routed (32 - 255)
Return drvret

« DRV_CK - on success
e DRV_I NVAL - on non-logical address

The router also supports static routing in which all packets received on a certain port are always forwarded un-
modified to a specified port regardless of the target address in the packet. Static routing is enabled for a port by
grspwouter_static_route_set().

Table 26.8. gr spwrout er _port_stati c_rout e_set function declaration

Name grspwrouter_port_static route set()

Proto drvret grspwouter_port_static_route_set(grspwouter_dev * dev,
uint8 t port, uint32_t destination, bool use route_info)

About Set up a static route for incoming packets on a specific port

This function enables static routing for a port where incoming packets are always routed unmodified
to a specific output port regardless of the address in the packet. By settinguse_route_i nfoto
t r ue it is possible to use the normal route information to route the packet to multiple ports.

Param dev - [in] - Valid router device handle

Param port - Index of avalid port

Param desti nati on - Target port

Param use_rout e_i nf o - Usethetarget addresses configured by gr spwr out er _r out e_set for
the target

Return drvret

¢ DRV_CX - on success
» DRV_I NVAL - if static routing not supported, or invalid port or destination

Table 26.9. gr spwrout er _port _static_route_di sabl e function declaration

Name grspwrouter_port_static route disable()

Proto drvret grspwouter _port_static_route_disable(grspwouter_dev *
dev, uint8_t port)

About Disable static routing for the port

Disable static routing for the port.
Param dev - [in] - Valid router device handle

Param port - Index of avalid port

Return drvret
¢ DRV_CX - on success

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 208

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name grspwrouter_port_static route disable()
e DRV_I NVAL - if invalid port

26.5.1. GR716B

The SpaceWire router in GR716B can only use 1 logical address at a time. The current logical address that is
mapped can beread by gr 716b_gr spwr out er _mapped_adr _get ()

If alogical address has aready been selected then in order to change the currently mapped address it must first be
reset withgr 716b_gr spwr out er _mapped_adr _reset ()

After the mapped address has been reset a new route can then be created with gr spwr out er _rout e_set ()

Table 26.10. gr 716b_gr spw out er _mapped_adr _get function declaration

Name |gr716b_grspwrouter_mapped_adr_get()

Proto uint8 t gr716b_grspw outer mapped_adr_get(grspwouter_dev * dev)

About Return the current mapped address

Returns routers current mapped address. GR716b only.

Param dev - [in] - Valid router device handle

Return |ui nt 8_t - Current mapped address

Table 26.11. gr 716b_gr spw out er _mapped_adr _r eset function declaration

Name gr716b_grspwrouter_mapped_adr_reset()

Proto uint8 t gr716b_grspwout er mapped_adr_reset(grspw outer_dev *
dev)

About Resets the current mapped adress

Reset the currently mapped address on GR716B. The currently mapped address needs to be reset
before a new address can be mapped.

Param dev - [in] - Valid router device handle

Return drvr et
¢ DRV_CX - on success

26.6. Link handling

A SpaceWirelink can be started with adesired link rate by callingthegr spwr out er _port _|ink_start ()
function.

Table 26.12. gr spwrout er _port _|ink_start function declaration

Name grspwrouter_port_link_start()

Proto drvret grspwouter _port link start(grspwouter_dev * dev, uint8_t
port, uint32_t link rate)

About Start the SpaceWire link

Configure the link rate to use and enable the link. The link rate shall be specified in MBits/s.

This function can only be called on a SpaceWire port, not an AMBA port.

Param dev - [in] - Valid router device handle

Param port - Index of avalid SpaceWire port
Param | i nk_r at e - Therequested run-state link rate
Return drvret

¢ DRV_CX - on success

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 209

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name grspwrouter_port_link_start()
« DRV_I NVAL - port isnot a SpaceWire port or invalid link rate

Table 26.13. gr spwr out er _port | i nk_st op function declaration

Name grspwrouter_port_link_stop()

Proto drvret grspwouter_port_link_stop(grspwouter_dev * dev, uint8_t
port)

About Stops the SpaceWire port link

This function can only be called on a SpaceWire port, not an AMBA port.
Param dev - [in] - Valid router device handle

Param port - Index of avalid SpaceWire port

Return drvret
« DRV_CK - on success
e DRV_I NVAL - port is not a SpaceWire port

The current state of the link can be checked by using gr spw out er _port _|i nk_st at us() . Possible states
are:

* error reset (GRSPWROUTER_LINK_ERROR_RESET)

* error wait (GRSPWROUTER_LINK_ERROR_WAIT)

* ready (GRSPWROUTER_LINK_READY)

* started (GRSPWROUTER_LINK_STARTED)

 connecting (GRSPWROUTER_LINK_CONNECTING)

¢ run state (GRSPWROUTER_LINK_RUN_STATE)

Table 26.14. gr spwr out er _port | i nk_st at us function declaration

Name grspwrouter_port_link_status()

Proto drvret grspwouter_port_|ink status(grspwouter_dev * dev, uint8_t
port, link _state * status)

About Returnsthe link state of the SpaceWire port

This function can only be called on a SpaceWire port, not an AMBA port.
Param dev - [in] - Valid router device handle

Param port -Index of avalid SpaceWire port

Param st at us - [out] - The current link state

Return drvret

¢ DRV_CX - on success
e DRV_I NVAL - port is hot a SpaceWire port

An overview of the run state of al links can be read out by gr spw out er _| i nk_st at us(), which return
abitmask indicating which links are in run state.

Table 26.15. gr spwr out er _| i nk_st at us function declaration

Name grspwrouter_link_status()

Proto void grspwouter |ink _status(grspwouter_dev * dev, uint32_t *
run_state)

About Return list of SpaceWire portswith linksin runstate

The mask returned by the function indicates which SpaceWire port links are in runstate. Bit 1 is
SpaceWire port 1, bit 2 is SpaceWire port 2, and so on.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 210

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name grspwrouter_link_status()

Param dev - [in] - Valid router device handle
Param run_st at e - [out] - Mask indicating runstate of each link

The status of a port can be checked with gr spwr out er _port _st at us() . Thisincludesinformation on any
error events that have occurred and if the port is currently transmitting or receiving data.

Table 26.16. gr spwr out er _port _st at us function declaration

Name grspwrouter _port_status()

Proto drvret grspwouter_port_status(grspwouter_dev * dev, uint8_t
port, uint32_t * status)

About Return the status of the port

This function returns the value of the status register for the port.

The status value can be parsed using the following defines:

* port type (SpaceWire/AMBA/FIFO/Custom)
(GRSPWROUTER_STATUS PORT_TY PE(status))

« apacket for which this port was the input port has been spilled due to the packet length trunca-
tion feature (GRSPWROUTER_STATUS _ERR_TRUNC)

« apacket for which this port was the input port has been spilled due to the time-code / distribut-
ed interrupt code truncation feature (GRSPWROUTER_STATUS ERR INTTRUNC)

* an RMAP / SpaceWire Plug-and-Play command received on this port was spilled by the con-
figuration port (GRSPWROUTER_STATUS ERR_RMAP)

» apacket received on this port was spilled due to the spill-if-not-ready feature
(GRSPWROUTER_STATUS ERR_NOTRDY)

« thisport either was started, or currently istrying to start, due to the link-start-on-request feature
(GRSPWROUTER_STATUS _START_REQUEST)

 apacket that isincoming on this port currently is being spilled
(GRSPWROUTER_STATUS SPILL)

« apacket arrives at this port and the port has been given access to the routing table
(GRSPWROUTER_STATUS ACTIVE_STATUYS)

« the active SpaceWire portsif dual portsisimplemented
(GRSPWROUTER_STATUS_ACTIVE_PORT)

 apacket for which this port was the input port was spilled due to a packet timeout
(GRSPWROUTER_STATUS _ERR_TIMEOUT)

» amemory error occur while accessing the on-chip memory in the ports
(GRSPWROUTER_STATUS ERR_MEM)

« transmit FIFO on this port is full (GRSPWROUTER_STATUS TX_FIFO_FULL)

* receive FIFO on this port is empty (GRSPWROUTER_STATUS RX_FIFO_EMPTY)

« current link state (GRSPWROUTER_STATUS LINK_STATE(status))

« the number of the input port for the current or last packet transfer on this port
(GRSPWROUTER_STATUS INPUT_PORT (status))

 port istheinput port of an ongoing packet transfer (GRSPWROUTER_STATUS RX_BUSY)

* port isthe output port of an ongoing packet transfer
(GRSPWROUTER_STATUS TX_BUSY)

» aninvalid address error occurred on this port (GRSPWROUTER_STATUS ERR_ADRS)

* acredit error has occurred (GRSPWROUTER_STATUS ERR_CREDIT)

« an escape error has occurred (GRSPWROUTER_STATUS ERR_ESCAPE)

« adisconnect error has occurred (GRSPWROUTER_STATUS ERR_DISCON)

 aparity error has occurred (GRSPWROUTER_STATUS ERR_PARITY)

Param dev - [in] - Valid router device handle

Param port - Index of avalid port

Param st at us - [out] - The port status register

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 211

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name |grspwrouter_port_status()

Return drvret
« DRV_CK- on success
* DRV_I NVAL - portisnot avalid port

26.7. Error handling

Thegr spwr out er _i sr_regi st er () function canbeused toinstall ahandler that will be called when spec-
ified error events occur on the port, or when alink enters run state. It is possible to specify for which events the
handler should be called, and for which ports.

Table 26.17. gr spwr out er _i sr_regi st er function declaration

Name grspwrouter _isr_register()

Proto void grspwouter_isr_register(grspwouter_dev * dev, uint32_t
err_mask, uint32_t port_mask, grspwouter_isr_func isr, void *
arg)

About Register handler for port events

Register a handler for the selected interrupt types. The defines below can be or:ed together to form
the mask argument:

» Generate an interrupt when a SpaceWire Plug and Play error has been detected in the configu-
ration port (GRSPWROUTER_INTERRUPT_CONF_PNP)

» Generate an interrupt when a packet has been spilled because of the spill-if-not-ready feature
(GRSPWROUTER_INTERRUPT_NOTRDY)

» Generate an interrupt when a SpaceWire link enters run-state
(GRSPWROUTER_INTERRUPT_RUN_STATE)

» Generate an interrupt when a packet has been spilled because of the time code/ distributed in-
terrupt code truncation feature (GRSPWROUTER_INTERRUPT_INTTRUNC)

» Generate an interrupt when a packet has been spilled due to the packet length truncation fea-
ture (GRSPWROUTER_INTERRUPT_TRUNC)

» Generate an interrupt when a packet has been spilled due to the timeout mechanism
(GRSPWROUTER_INTERRUPT_TIMEOUT)

» Generate an interrupt when either a header CRC error, protocol 1D error, pack-
et type error, early EOP, or early EEP has been detected in the configuration port
(GRSPWROUTER_INTERRUPT_CONF_PORT)

» Generate an interrupt when an error has been detected in the configuration port
for an RMAP command such that the PSTS.EC field is set to a non-zero value
(GRSPWROUTER_INTERRUPT_CONF_RMAP)

* Generate an interrupt when an invalid address error has occurred on a port
(GRSPWROUTER_INTERRUPT_ADRYS)

» Generate an interrupt when alink error (parity, escape, credit, disconnect) has been detected on
a SpaceWire port (GRSPWROUTER_INTERRUPT_LINK)

» Generate an interrupt when amemory error occur in any of the router's on-chip memories
(GRSPWROUTER_INTERRUPT_MEM)

The define GRSPWROUTER _INTERRUPT_ALL can be used to enable all interrupt types and
GRSPWROUTER_INTERRUPT_NONE to disable al interrupt types.

Param dev - [in] - Valid router device handle

Param err _mask - Interrupts that the handler should trigger on

Param port _mask - Portsthat the interrupts can be generated for

Param i sr -[in] - Interrupt handler function pointer

Param ar g - [in] - Custom argument to interrupt handler

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 212

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

26.8. Time codes

To make it possible to send time codes the time code support needs to be enabled both globally in the router and
for each port that shall send or receive them. The router will keep track of the current time code, but initiating
a time code change or handling interrupts codes must be done via an AMBA port using the SpaceWire driver
(Chapter 11).

Time codes ae enabled globaly by grspwouter tc enable() and per port by
grspw out er _port _tc_enabl e() .Usingthelatter function therouter can be configured to ignorethetime
code values it receives from the AMBA port and instead always use itsinternal time representation.

Table 26.18. gr spwr out er _t ¢c_enabl e function declaration

Name grspwrouter_tc_enable()

Proto void grspwouter_tc_enable(grspwouter_dev * dev)
About Enable the handling of time codes

Enable the router time code support. Also needs to be enabled for each port that intend to use time
codesusing gr spwr out er _port _tc_enabl e.

Param dev - [in] - Valid router device handle

Table 26.19. gr spwr out er _t ¢_di sabl e function declaration

Name grspwrouter_tc_disable()
Proto void grspwouter_tc_disable(grspwouter_dev * dev)
About Disable time code support

Disable the router time code support.
Param dev - [in] - Valid router device handle

Table 26.20. gr spwr out er _port _t c_enabl e function declaration

Name |grspwrouter_port_tc_enable()

Proto drvret grspwouter_port _tc_enabl e(grspwouter_dev * dev, uint8_t
port, bool router_tine)

About Enable time code support

This function enables time codes to be sent and received viathe port. If rout er _ti meistrue
the router will not look at the timer value and instead use itsinternal time representation.

Time code support also needs to be enabled globally using gr spwr out er _t c_enabl e.
Param dev - [in] - Valid router device handle

Param port - Index of avalid port

Param rout er _tine - If true, always use the routers time, never the incoming time

Return drvret

* DRV_CX - on success
e DRV_I NVAL - if invalid port

Table 26.21. gr spwr out er _port _tc_di sabl e function declaration

Name |grspwrouter_port_tc disable()

Proto drvret grspwouter port tc disable(grspwouter _dev * dev, uint8_t
port)
About Disable time code support

Disables support for time codes for the port. Any time codes received will be dropped.
Param dev - [in] - Valid router device handle

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 213

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name grspwrouter _port_tc disable()
Param port - Index of avalid SpaceWire port

Return drvret
* DRV_CK- on success
e DRV_I NVAL - if invalid port

The internal time representation can be read out with grspwrouter _tc_get() and set to O with
grspwouter_tc _reset().

Table 26.22. gr spwr out er _t c_get function declaration

Name |grspwrouter_tc_get()
Proto uint8 t grspwouter _tc _get(grspwouter_dev * dev)

About Return the current time code

Returns routers internal time representation.

Param dev - [in] - Valid router device handle

Return |ui nt 8_t - Current time code

Table 26.23. gr spwr out er _t ¢c_r eset function declaration

Name grspwrouter_tc reset()
Proto void grspwouter_tc_reset(grspwouter_dev * dev)

About Set the current time code to O

Sets the routers internal time representation to O.

Param dev - [in] - Valid router device handle

26.9. Interrupt codes

The routing of interrupt-codes needs to be enabled both for the router and per port. For the router it is enabled by
gr spw out er _i c_enabl e() . When enabling the interrupt code support it is possible to set atime out that
will trigger an interrupt if an acknowledge reply is not received within the specified time period (100ys - 6.59).

It also possible to set a cooldown period to protect against being flooded by interrupt codes (100us - 25ms). A new
interrupt-code will not be registered until the cooldown has expired. Both the timeout and cooldown are optional
and can be disabled by setting the time period to 0.

Table 26.24. gr spwr out er _i ¢c_enabl e function declaration

Name grspwrouter_ic_enable()

Proto drvret grspwouter _ic_enable(grspwouter_dev * dev, uint32_t tine-
out, uint32_t cool down)

About Enable interrupt code support

Enable the router interrupt code support. Also needs to be enabled for each port that intend to send
or receive interrupt codes using gr spwr out er _port _i c_enabl e.

A timer can be configured that will trigger an interrupt when an acknowledge reply is not received
within the specified time period (100us - 6.5s).

A cooldown period can be configured that prevents new interrupts from being submitted until the
specified time period has passed (100ps - 3.1ms).

Set the timeout to zero to disable.

Param dev - [in] - Valid router device handle

Param ti meout - Timeout in microseconds (or O to disable) (100 - 6553500 in steps of 100)

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 214

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name grspwrouter_ic_enable()
Param cool down - Cooldown period in microseconds (or O to disable) (100 - 3100 in steps of 100)

Return drvret

* DRV_CK- on success
« DRV_I NVAL - if the timeout or cooldown value istoo big

Table 26.25. gr spwr out er _i ¢_di sabl e function declaration

Name grspwrouter_ic_disable()

Proto voi d grspwouter _ic_disable(grspwouter_dev * dev)

About Disable interrupt code support

Disable interrupt code support for al portsin router

Param dev - [in] - Valid router device handle

The per port interrupt-code support is enabled by gr spw out er _port _i c_enabl e() . By default it enables
forwarding of both interrupt codes and interrupt acknowledgement codes in both directions, but it is possible to
disable the transmission or reception of interrupt or interrupt acknowledgement codes.

Table 26.26. gr spwr out er _port _i c_enabl e function declaration

Name |grspwrouter_port_ic_enable()

Proto drvret grspwouter _port _ic_enable(grspwouter_dev * dev, uint8_t
port, uint32_t options)

About Enable interrupt code support for port

By default forwarding of both interrupt codes and interrupt acknowledgement codes in both direc-
tion are enabled. This can be changed by or:ing the defines below together to form an opt i ons ar-
gument:
« Disable the transmission of interrupt codes (GRSPWROUTER_IC _DIS TX_INT)
« Disable the reception of interrupt codes (GRSPWROUTER_IC DIS RX_INT)
« Disable the transmission of interrupt acknowledgement codes
(GRSPWROUTER_IC_DIS TX_ACK)
« Disable the reception of interrupt acknowledgement codes
(GRSPWROUTER_IC_DIS _RX_ACK)

Interrupt code support also needs to be enabled globally using gr spwr out er _i ¢_enabl e.

Param dev - [in] - Vaid router device handle

Param port - Index of avalid SpaceWire port

Param opti ons - Options mask

Return drvret

¢ DRV_CX - on success
* DRV_I NVAL - if invalid port

Table 26.27. gr spwr out er _port _i c_di sabl e function declaration

Name grspwrouter_port_ic_disable()

Proto drvret grspwouter port _ic_disable(grspwouter _dev * dev, uint8_t
port)
About Disable interrupt code support for port

Disables support for interrupt codes for the port. Any interrupt codes received will be dropped.

Param dev - [in] - Valid router device handle

Param port - Index of avalid SpaceWire port

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 215

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name grspwrouter_port_ic_disable()

Return drvret
« DRV_CK- on success
e DRV_I NVAL - if invalid port

Usingthegr spwr out er _port _code_truncati on() functionitispossibleto abort the currently received
packet when an interrupt code or time code with a specified value is received. The packet will be truncated and
marked with an EEP.

Table26.28. gr spwr out er _port _code_truncat i on function declaration

Name grspwrouter_port_code_truncation()

Proto drvret grspwouter_port_code_truncation(grspwouter_dev * dev,
uint8_t port, bool enable, uint8 t value, uint8 t mask)

About Abort packet on time/interrupt code

Configure the port to abort the current packet if atime or interrupt code with the specified valueis
received.

Param dev - [in] - Valid router device handle

Param port - Index of avalid SpaceWire port
Param enabl e - Enable packet truncation

Param val ue - Thevalue that can cause truncation
Param mask - Mask for the value
Return drvr et

* DRV_CK - on success
e DRV_I NVAL - if invalid port

26.10. Configure timeouts

The packet timeout functionality is enabled by gr spwr out er _port _ti nmeout (). It possible to enable it
for overruns (when the input port has data available, but the output port(s) can not accept data fast enough) and
underruns (when the output port(s) can accept more data, but the input port can not provide data fast enough). It
isalso possible to useit to automatically stop the link if it has not been used within the specified time.

Table 26.29. gr spwr out er _port _ti meout function declaration

Name grspwrouter_port_timeout()

Proto drvret grspwouter_port_timeout(grspwouter_dev * dev, uint8_t
port, uint32_t tinmeout, bool overrun, bool underrun, bool autodis-
connect)

About Enable timeouts

Enable atimeout for packets transfers (overrun and underrun) and auto-disconnect per port.

An overrun timeout occurs when the input port has data available but the output port(s) can not ac-
cept data fast enough. An underrun timeout occurs when the output port(s) can accept more data but
the input port can not provide data fast enough. The timeout can be set to between 100ys - 6.5s.

Param dev - [in] - Valid router device handle

Param port - Index of avalid SpaceWire port
Param ti meout - Thetimeout in microseconds (100 - 6553500 in steps of 100)
Param overrun - Enable for overrun

Param under r un - Enable for underrun

Param aut odi sconnect - Enable for auto disconnect (Only for SpaceWire ports)

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 216

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Name grspwrouter _port_timeout()

Return drvret
« DRV_CK- on success

e DRV_I NVAL - if trying to enable auto disconnect on non-SpaceWire port, or if invalid
port, or if the timeout valueistoo big

26.11. Configure packet max length

A max packet length can be configured for each port. If a packet exceeds this length it will be trun-
cated by the router and get an error end of packet (EEP). The max packet length is set by the
gr spw out er _port_max_| engt h() function.

Table 26.30. gr spwr out er _port _nmax_| engt h function declaration

Name |grspwrouter_port_max_length()

Proto drvret grspwouter _port_max_| ength(grspwouter _dev * dev, uint8_t
port, uint32_t length)

About Set the maximum length of packets

If an incoming packetsis larger it will be truncated and marked with an EEP. Use the length O to ac-
cept any length.

Param dev - [in] - Valid router device handle

Param port - Index of avalid SpaceWire port

Param | engt h - The maximum length of the packet or O to disable

Return drvret
« DRV_CK - on success
e DRV_I NVAL - if invalid port

26.12. Configure Plug-and-Play

The router supports the SpaceWire Plug-and-Play protocol which can be used to discover devices on the network.
The gr spwr out er _pnp_set () function is used to set the vendor id, product id, and serial number of the
device which is presented to any device scanning the network using the protocol.

Table 26.31. gr spwr out er _pnp_set function declaration

Name grspwrouter_pnp_set()

Proto void grspwouter_pnp_set(grspwouter_dev * dev, uintl1l6_t
vendor id, uintl6 t product _id, uint32_t serial, bool
keep_instance_id)

About Set the SpaceWire Plug-and-Play information

Sets the serial number, vendor id, and product id that is presented when accessing this device using
the SpaceWire Plug-and-Play protocol. Bits 3:0 of the serial number can be set using the INSTAN-
CEID[7:0] signal. Usekeep_i nst ance_i d to preserve this part of the serial nhumber.

Param dev - [in] - Valid router device handle

Param vendor _i d - Custom vendor id

Param product _i d - Custom product id

Param seri al - Custom seria number

Param keep_i nstance_i d - Usereset value for bits 3:0 of serial number

26.13. Read out credit counters

The credit counter for a SpaceWire port can be read out using gr spwr out er _port _cred() . It can only be
called on a SpaceWire port and will return an error if used on an AMBA port.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 217

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 26.32. gr spwr out er _port _cr ed function declaration

Name grspwrouter_port_cred()

Proto drvret grspwouter_port_cred(grspwouter_dev * dev, uint8_t port,
uint8 t * in, uint8_.t * out)

About Read the credit counters for the port

Returns the current credit counters for the SpaceWire port. Can not be used on an AMBA port.
Param dev - [in] - Valid router device handle

Param port - Index of avalid SpaceWire port

Param i n-[out] - Incoming credit

Param out - [out] - Outgoing credit

Return drvret
« DRV_CK - on success
e DRV_I NVAL - if invalid SpaceWire port

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 218

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

27. GR716B Real-Time Accelerator (RTA)

27.1. Introduction
This section describes the driver used to control the two Real-Time Accelerator(RTA) available in GR716B.

27.1.1. User Interface
This section covers how the driver can be interfaced to an application to control the RTA devices.

Controlling the driver and device is done with functions provided by the driver prefixed with rt a_. All driver
functions take a device handle returned by rt a_open as the first parameter. All supported functions and their
data structures are defined in the driver's header filedr v/ rt a. h.

27.1.2. Features

e Set entry point and start RTA devices.
* Inter-processer communication via mailbox register.
» Read and write mailbox interrupt registers.

27.1.3. Hardware support
The RTA interfaceis only available for GR716B and must be compiled with the - gbsp=gr 716b flag.

27.2. Examples

There is an example available that uses the RTA driver to start two RTA units and communicates with them via
the mailbox register.

The example is divided into three parts. One for the main CPU and one for each RTA. The included Makefile
demonstrates how applications can be built and linked for each RTA.

The exampleis part of the driver distribution, it can be found under exanpl es/ rt a.

27.3. Software design considerations

The same driver interface is used for both the main CPU and for the RTA themselves. Main difference is that the
main CPU can open both RTAs but the RTA software should only open the device corresponding to itself.

When compiling software for a RTA the software must be compile with the - nf | at flag aswell as with Sin-
gle Vector Traping (using - gsvt flag). The correct linker-script must also be used i.e. using the option - T
i nkcrmds-rtal for RTAOand-T |i nkcnds-rtal for RTAL For example

$ sparc-gaisler-elf-gcc exanple.c -o exanple -gbsp=gr716b -nctpu=leon3 -nflat -gsvt -T linkcnds-rta0 -ldrv
27.4. Driver sources

The driver sources and definitions are listed in the table below, the path is given relative to the driver source tree
src/libdrv.

Table 27.1. RTA driver source location

L ocation Description
src/include/drv/rta.h RTA user interface definition
src/rta RTA driver implementation

27.5. Driver registration
This driver uses the driver registration mechanism described in Chapter 10.

Table 27.2. Driver registration functions

Registration method Function
Register one devices rta_register()
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 219

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Registration method Function
Register many devices rta_init()

27.6. Opening devices

As mentioned in section Section 27.3 the main CPU should open all RTA devices but the RTA software should
only open itself.

For software running on the main CPU it would look someting like the following.

int main_cpu_open_rta_devices(void)
{ .

int count;

struct rta_priv *rta0;

struct rta_priv *rtal;

rta_init(GR716_RTA DRV_ALL);

count = rta_dev_count();
printf("%l rta device(s) present\n", count);

rta0 = rta_open(0);
if (!rtao) {
return -1; /* Failure */

rtal = rta_open(1);
if (!rtal) {

return -1; /* Failure */
}

rta_cl ose(rta0);
rta_close(rtal);
return 0; /* success */

}

For software running on the RTA the following example can be used instead.

int RTA_INDEX = 0;
int rta0_open_rta_devi ce(void)
{

struct rta_priv *rta_self;
rta_init(GR716_RTA DRV_ALL);
rta_self = rta_open(RTA_| NDEX);
if (!'rta_self) {

return -1; /* Failure */

rta_close(rta_self);
return 0; /* success */

}

Table27.3.rt a_dev_count function declaration

Proto |int rta_dev_count (void)

About |Retrieve number of devicesregistered to the driver.

Return |int. Number of devices registered in system, zero if none.

Table 27.4.r t a_open function declaration

Proto |struct rta_priv *rta_open(int dev_no)

About |Opensartadevice. The deviceisidentified by index. The returned value is used as input argument to
al functions operating on the device.

Param |dev_no [IN] Integer

Device identification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
byrta_ dev_count.

Return |Pointer. Status and driver'sinternal device identification.

NULL Indicates failure to open device. Failsif device semaphore fails or device already is
open.

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 220

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all RTA
API functions.

Table 27.5. rt a_cl ose function declaration

Proto |int rta_close(struct rta _priv *d)

About |Closesa previously opened device.

Param |d [IN] pointer

Deviceidentifier. Returned fromrt a_open.
Return |int. BCC_OK

27.7. Starting the RTAs

There are two ways to start the RTAs. Either with rta_set _ep or with rta_start. But in both cases
rta_set ep mustfirst be called to set up the entry point of execution for the RTA.

To start the RTA at the same time as setting the entry point call rt a_set _ep with thelast (st ar t) argument
set to non-zero.

voi d start_RTAs_n_go(voi d)

{
uint32_t rta0_entrypoint = 0x61000038;
uint32_t rtal_entrypoint = 0x71000038;
rta_set_ep(rta0, rta0O_entrypoint, 1);
rta_set_ep(rtal, rtal_entrypoint, 1);

}
To first set-up the RTA entry point but start it at alater point, first call rt a_set _ep but with the last argument
setto 0. Then at alater pointcall rt a_st art to start execution.
voi d setup_and_start_RTAs(void)
{
uint32_t rta0_entrypoint = 0x61000038;
uint32_t rtal_entrypoint = 0x71000038;

rta_set_ep(rta0, rta0_entrypoint, 0);
rta_set_ep(rtal, rtal_entrypoint, 0);

[...]

rta_start(rta0);

[...]

rta_start(rtal);

}

Table 27.6.rt a_set _ep function declaration

Proto |uint32_t rta_set _ep(struct rta priv *d, uint32_t entry, int start)

About | Set the entry point for given RTA.
Param |d [IN] pointer
Deviceidentifier. Returned fromrt a_open.

Param [entry [IN] uint32_t

Entry pointer to set

Param |start [IN]int

Set to non-zero to immediately start execution on the RTA
Return |int. BCC_OK

Table27.7.rt a_st art function declaration

Proto (uint32_t rta_start(struct rta_priv *d)
About |Start the given RTA.
Param |d [IN] pointer

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 221

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Deviceidentifier. Returned fromrt a_open.
Return |int. BCC_OK

27.8. Mailbox communication

Communication between the main processor and the RTAs are mainly done via a mailbox register interface and
interrupts.

When setting up the RTA the user should mask the desired interruptsusing r t a_set _rmask. The user can also
set theinterrupt level register withrta_set _| vl .

When an event occurs and the corresponding interrupt is masked an interrupt will be generated. The user can read
the RTA statusregister withrt a_get _st at us to find out what triggered the interrupt. The main CPU can then
accknowledge this interrupt and clear it with thert a_set _i r q funtion. Interrupts are cleared by writing the
the bit representing the interrupt.

Custom user events between the main CPU and the RTA can be sent via the status register using
rta_set_usr_bits. If the USR bits are masked in the interrupt register, an interupt will then be generated
when these bitsare written to. Note that there are only 4 user bitsin the statusregister, so only thefirst nibble of the
input will bewrittento themailbox. Itispossibleto read out the user bitswithther t a_get _usr _bi t s function.

vol atile int done = O;
void *rtao;

void rta0_irq_catch(void)

uint32_t nmsg = rta_get_usr_bits(rta0);

printf("cpu0: Got irq from RTAO with nessage Ox%08I x\n", msg);
/* Enpty the mail box */

rta_set_usr_bits(rta0, 0);

/* Clear all interrupts */
rta_set_irqg(rta0, -1);
done = 1;

}

int min ()

rta_init(GR716_RTA DRV_ALL);
printf("Found % registered RTAs in systemn", rta_dev_count());

rta0 = rta_open(0);

rta_set_ep(rta0, 0x61000038, 0);
rta_set_lvl(rta0, 0xf0000001);
rta_set_mask(rta0, Oxf0000000);

bcc_int _map_set (60, 5);
bcc_isr_register(5, rta0_irg_catch, NULL);

bcec_i nt _unmask(5);
printf("cpu0: Starting RTA 0!\n");
rta_start(rta0);

whi | e(! done) {
bcc_power _down();
}
}

Table27.8.rta_get usr _bi ts function declaration

Proto (uint8 t rta get _usr _bits(struct rta priv *priv)
About |Getsthe user bits of the given RTAS status register.

Param |d [IN] pointer

Deviceidentifier. Returned fromr t a_open.

Return |int. BCC_OK

Table27.9.rta_set _usr _bi ts function declaration

‘Proto ‘ui nt32 t rta set _usr_bits(struct rta priv *d, uint8_t val)

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 222

https://www.frontgrade.com/gaisler

rRONTGRADE
Gaisler

About | Set the user bits of the RTA mailbox status register.
Param |d [IN] pointer
Deviceidentifier. Returned fromrt a_open.
Param |val [IN] uint8 t
Valueto set. Note that only the lowest nibble of val will be set, as the register only have 4 user bits.
Return |int. BCC_OK

Table 27.10. RTA mailbox getter function declarations

Proto uint32 t rta get status(struct rta priv *priv)
uint32_t rta_get_lvl(struct rta_priv *priv)

uint32 t rta get _mask(struct rta priv *priv)
About |Get RTA mailbox status register.

Get RTA mailbox interrupt level detection configuration register.
Get RTA mailbox mask register for interrupt generation.

The functions returns the value of the corresponding RTA register.

Param |pri v [IN] pointer
Deviceidentifier. Returned fromrt a_open..
Return |uint32_t. Vaueread from register.

Table 27.11. RTA mailbox setter function declarations

Proto uint32_t rta_set_lvl(struct rta_priv *priv, uint32_t val)
uint32_t rta_set _irq(struct rta_priv *priv, uint32_t val)

uint32 t rta_set _mask(struct rta priv *priv, uint32_t val)

About | Set RTA mailbox interrupt level detection configuration register.
Set RTA mailbox interrupt register.
Set RTA mailbox mask register for interrupt generation.

The functions sets the value of the corresponding RTA register.

Param |pri v [IN] pointer

Device identifier. Returned fromrt a_open.
Param |val [IN] uint32_t

Value to write to the corresponding register.
Return |BCC_OK.

27.9. APl reference

This section lists al functions part of the rta driver API, and in which section(s) they are described. The API is
also documented in the source header file of the driver, see Section 27.4.

Table 27.12. rta function reference

Prototype Section
int rta_dev_count(void) 27.6
struct rta_priv *rta_open(int dev_no) 27.6
uint32 t rta close(struct rta priv *d) 27.6
BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jul 2023, Version 2.2.4 223

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler
Prototype Section
uint32_t rta_set_ep(struct rta_priv *d, uint32_t entry, int start) |27.7
uint32 t rta _start(struct rta _priv *d) 27.7
uint32 t rta set _usr_bits(struct rta priv *d, uint8_t val) 27.8
uint8 t rta _get_usr_bits(struct rta_priv *priv) 27.8
uint32_t rta_set _lvl(struct rta_priv *priv, uint32_t val) 27.8
uint32 t rta set _irqg(struct rta_priv *priv, uint32_t val)
uint32_t rta_set_mask(struct rta_priv *priv, uint32_t val)
uint32_t rta_get_status(struct rta_priv *priv) 27.8
uint32 t rta get lvl(struct rta_priv *priv)
uint32 t rta get _mask(struct rta priv *priv)

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 224

https://www.frontgrade.com/gaisler

rRONTGRADE

Gaisler

Frontgrade Gaisler AB
Kungsgatan 12

411 19 Goteborg
Sweden
frontgrade.com/gaisler
sales@gaisler.com

T: +46 31 7758650

F: +46 31 421407

Frontgrade Gaisler AB, reserves the right to make changes to any products and services described herein at any time without
notice. Consult the company or an authorized sales representative to verify that the information in this document is current before
using this product. The company does not assume any responsibility or liability arising out of the application or use of any product
or service described herein, except as expressly agreed to in writing by the company; nor does the purchase, lease, or use of
a product or service from the company convey a license under any patent rights, copyrights, trademark rights, or any other of
the intellectual rights of the company or of third parties. All information is provided as is. There is no warranty that it is correct or

suitable for any purpose, neither implicit nor explicit.

Copyright © 2023 Frontgrade Gaisler AB

BCC-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jul 2023, Version 2.2.4 225

https://www.frontgrade.com/gaisler
https://www.frontgrade.com/gaisler

	
	Table of Contents
	1. Introduction
	1.1. Scope
	1.2. Installation
	1.2.1. Host requirements
	1.2.2. Linux
	1.2.3. Windows

	1.3. Contents of /opt/bcc-2.2.4-gcc
	1.4. BCC tools
	1.5. Documentation
	1.6. Toolchain source code distribution
	1.6.1. BCC source code installation
	1.6.2. Building

	1.7. Support

	2. Using BCC
	2.1. General development flow
	2.2. Compiler options
	2.2.1. sparc-gaisler-elf-gcc options
	2.2.2. sparc-gaisler-elf-clang options

	2.3. Compiling BCC applications
	2.4. Floating-point considerations
	2.5. LEON SPARC V8 instructions
	2.6. Multiply and accumulate instructions
	2.7. Single register window model (flat)
	2.8. Register usage
	2.9. Single vector trapping
	2.10. Memory organization
	2.11. BCC Board Support Packages
	2.12. Peripheral driver library
	2.13. Multiprocessing
	2.14. Debugging with GDB
	2.14.1. Debug information considerations

	2.15. Examples
	2.15.1. Target specific examples

	2.16. Creating a bootable ROM images

	3. LLVM based toolchain
	3.1. Introduction
	3.2. BCC LLVM/Clang tools

	4. C standard library
	4.1. File I/O
	4.2. Time functions
	4.3. Dynamic memory allocation
	4.4. Atomic types and operations
	4.5. Newlib nano

	5. BCC library
	5.1. Usage
	5.2. Console API
	5.3. Timer API
	5.3.1. Interrupt based timer service

	5.4. Cache control API
	5.5. Bus access API
	5.6. IU control/status register access API
	5.6.1. Processor State Register
	5.6.2. Trap Base Register
	5.6.3. Processor power-down

	5.7. FPU context API
	5.8. Trap API
	5.8.1. Single vector trapping (SVT)

	5.9. Interrupt API
	5.9.1. Interrupt disable and enable
	5.9.2. Interrupt source masking
	5.9.3. Clear and force interrupt
	5.9.4. Interrupt remap
	5.9.5. Interrupt service routines
	5.9.5.1. Automatic memory management
	5.9.5.2. User memory management

	5.9.6. Interrupt nesting
	5.9.6.1. Advanced configuration

	5.9.7. Low-level interrupt handlers
	5.9.8. Interrupt timestamping

	5.10. Asymmetric Multiprocessing API
	5.10.1. Processor identification
	5.10.2. Inter-processor control

	5.11. Default trap handlers
	5.12. API reference

	6. AMBA Plug&Play library
	6.1. Introduction
	6.1.1. AMBA Plug&Play terms and names
	6.1.2. Availability

	6.2. Device scanning
	6.3. User callback
	6.3.1. Criteria matching
	6.3.2. Device information

	6.4. Example
	6.5. API reference

	7. Board Support Packages
	7.1. Overview
	7.2. LEON3
	7.3. LEON5
	7.4. GR712RC
	7.5. GR740
	7.6. GR716
	7.6.1. Supported features
	7.6.2. Boot ROM
	7.6.2.1. Executing from volatile RAM
	7.6.2.2. Executing from persistent memory
	7.6.2.3. System clock

	7.6.3. APBUART initialization
	7.6.4. Chip specific API
	7.6.4.1. Pin configuration
	7.6.4.2. LVDS configuration
	7.6.4.3. PLL configuration

	7.7. LEON2
	7.8. AGGA4

	8. Customizing BCC
	8.1. Introduction
	8.2. Console driver
	8.2.1. Initialization
	8.2.2. Input and output functions
	8.2.3. Customization
	8.2.4. C library I/O

	8.3. Timer driver
	8.3.1. Initialization
	8.3.2. Time access functions
	8.3.3. Customization

	8.4. Interrupt controller driver
	8.4.1. Initialization
	8.4.2. Access functions
	8.4.3. Customization

	8.5. Initialization override example
	8.6. Initialization hooks
	8.7. Disable .bss section initialization
	8.7.1. Example

	8.8. Heap memory configuration
	8.9. Parameters to main()
	8.10. API reference

	9. Support
	Appendix A. Recommended GCC options for LEON systems
	Appendix B. Recommended Clang options for LEON systems
	Appendix C. Moving applications from BCC 1.0 to BCC 2.2.4
	Part I. Device drivers reference
	10. Driver registration
	10.1. Automatic registration
	10.2. Manual registration
	10.3. System specific device registration tables

	11. GRSPW Packet driver
	11.1. Introduction
	11.1.1. Hardware Support
	11.1.2. Driver sources
	11.1.3. Driver registration
	11.1.4. Examples
	11.1.5. Known driver limitations

	11.2. Software design overview
	11.2.1. Overview
	11.2.2. Initialization
	11.2.3. Link control
	11.2.4. Time Code support
	11.2.5. RMAP support
	11.2.6. Port support
	11.2.7. SpaceWire node address configuration
	11.2.8. User DMA buffer handling
	11.2.8.1. Buffer List help routines

	11.2.9. Driver DMA buffer handling
	11.2.9.1. DMA Queues
	11.2.9.2. DMA Queue operations

	11.2.10. Polling mode and interrupts
	11.2.11. Starting and stopping DMA

	11.3. Device Interface
	11.3.1. Opening and closing device
	11.3.2. Hardware capabilities
	11.3.3. Link Control
	11.3.4. Node address configuration
	11.3.5. Time-control codes
	11.3.6. Port Control
	11.3.7. RMAP Control
	11.3.8. Interrupt handling

	11.4. DMA interface
	11.4.1. Opening and closing DMA channels
	11.4.1.1. Static buffer allocation

	11.4.2. Starting and stopping DMA operation
	11.4.3. Packet buffer description
	11.4.4. Packet buffer lists
	11.4.5. Sending packets
	11.4.6. Receiving packets
	11.4.7. Transmission queue status
	11.4.8. Queue flushing
	11.4.9. Statistics
	11.4.10. DMA channel configuration
	11.4.11. DMA channel status

	11.5. API reference
	11.5.1. Data structures
	11.5.2. Device functions
	11.5.3. DMA functions

	11.6. Restrictions

	12. GRCAN CAN driver
	12.1. Introduction
	12.1.1. User Interface
	12.1.2. Driver registration
	12.1.3. Examples
	12.1.4. Known driver limitations

	12.2. Opening and closing device
	12.2.1. Static buffer allocation

	12.3. Operation mode
	12.3.1. Starting and stopping

	12.4. Configuration
	12.4.1. Channel selection
	12.4.2. GRCAN Timing parameters
	12.4.3. GRCANFD Timing parameters

	12.5. Receive filters
	12.5.1. Data structures
	12.5.2. Acceptance filter
	12.5.3. Sync filter

	12.6. Driver statistics
	12.7. Device status
	12.8. CAN bus transfers
	12.8.1. Data structures
	12.8.2. Transmission
	12.8.3. Reception
	12.8.4. Bus-off recovery
	12.8.5. AHB error recovery

	12.9. Interrupt API
	12.9.1. Interrupt generation

	13. UART driver
	13.1. Introduction
	13.2. Driver registration
	13.3. Opening and closing device
	13.4. Status interface
	13.5. Configuration interface
	13.6. Non-interrupt interface
	13.7. Interrupt interface
	13.8. Restrictions

	14. SPI driver
	14.1. Introduction
	14.2. Driver registration
	14.3. Opening and closing device
	14.4. Status service
	14.5. Transfer Configuration
	14.6. Transfer Interface
	14.7. Synchronous TX/RX mode
	14.8. Slave select
	14.9. Restrictions

	15. I2C master driver
	15.1. Introduction
	15.1.1. User Interface
	15.1.2. Features

	15.2. Driver registration
	15.3. Examples
	15.4. Opening and closing device
	15.5. Operation mode
	15.5.1. Starting and stopping

	15.6. Configuration
	15.6.1. Transaction retries
	15.6.2. Speed
	15.6.3. Interrupt driven operation
	15.6.4. I2C address width

	15.7. Driver statistics
	15.8. I2C bus transfer
	15.8.1. Data structures
	15.8.1.1. Packet
	15.8.1.2. List

	15.8.2. Request
	15.8.3. Reclaim

	15.9. Synchronous example

	16. Timer driver
	16.1. Introduction
	16.2. Driver registration
	16.3. Device interface
	16.3.1. Opening and closing device
	16.3.2. Device control

	16.4. Subtimer interface
	16.4.1. Opening and closing subtimer
	16.4.2. Subtimer control
	16.4.3. Watchdog support

	16.5. Restrictions

	17. GPIO driver
	17.1. Introduction
	17.2. Driver registration
	17.3. Opening and closing device
	17.4. Control interface
	17.4.1. Logical bit operations

	17.5. Interrupt map interface

	18. AHB Status Register driver
	18.1. Introduction
	18.2. Driver registration
	18.3. Opening and closing device
	18.4. Register interface
	18.5. Interrupt service routine

	19. Clock gating unit driver
	19.1. Introduction
	19.2. Driver registration
	19.3. Opening and closing device
	19.4. Operation
	19.5. Core reset
	19.6. Probe clock gating status
	19.7. CPU override

	20. GR1553B Driver
	20.1. Introduction
	20.1.1. Considerations and limitations
	20.1.2. GR1553B Hardware
	20.1.3. Software driver
	20.1.4. Driver Registration

	21. GR1553B Bus Controller Driver
	21.1. Introduction
	21.1.1. GR1553B Bus Controller Hardware
	21.1.2. Software driver
	21.1.3. Driver registration

	21.2. BC Device Handling
	21.2.1. Device API
	21.2.1.1. Data Structures
	21.2.1.2. gr1553bc_open
	21.2.1.3. gr1553bc_close
	21.2.1.4. gr1553bc_start
	21.2.1.5. gr1553bc_pause
	21.2.1.6. gr1553bc_resume
	21.2.1.7. gr1553bc_stop
	21.2.1.8. gr1553bc_indication
	21.2.1.9. gr1553bc_status
	21.2.1.10. gr1553bc_ext_trig
	21.2.1.11. gr1553bc_irq_setup

	21.3. Descriptor List Handling
	21.3.1. Overview
	21.3.2. Example: steps for creating a list
	21.3.3. Major Frame
	21.3.4. Minor Frame
	21.3.5. Slot (Descriptor)
	21.3.6. Changing a scheduled BC list (during BC-runtime)
	21.3.7. Custom Memory Setup
	21.3.8. Interrupt handling
	21.3.9. List API
	21.3.9.1. Data structures
	21.3.9.2. gr1553bc_list_init
	21.3.9.3. gr1553bc_list_alloc
	21.3.9.4. gr1553bc_list_free
	21.3.9.5. gr1553bc_list_config
	21.3.9.6. gr1553bc_list_link_major
	21.3.9.7. gr1553bc_list_set_major
	21.3.9.8. gr1553bc_minor_table_size
	21.3.9.9. gr1553bc_list_table_size
	21.3.9.10. gr1553bc_list_table_init
	21.3.9.11. gr1553bc_list_table_alloc
	21.3.9.12. gr1553bc_list_table_free
	21.3.9.13. gr1553bc_list_table_build
	21.3.9.14. gr1553bc_major_init_skel
	21.3.9.15. gr1553bc_major_alloc_skel
	21.3.9.16. gr1553bc_list_freetime
	21.3.9.17. gr1553bc_slot_alloc
	21.3.9.18. gr1553bc_slot_free
	21.3.9.19. gr1553bc_mid_from_bd
	21.3.9.20. gr1553bc_slot_bd
	21.3.9.21. gr1553bc_slot_irq_prepare
	21.3.9.22. gr1553bc_slot_irq_enable
	21.3.9.23. gr1553bc_slot_irq_disable
	21.3.9.24. gr1553bc_slot_jump
	21.3.9.25. gr1553bc_slot_exttrig
	21.3.9.26. gr1553bc_slot_transfer
	21.3.9.27. gr1553bc_slot_dummy
	21.3.9.28. gr1553bc_slot_empty
	21.3.9.29. gr1553bc_slot_update
	21.3.9.30. gr1553bc_slot_raw
	21.3.9.31. gr1553bc_show_list

	22. GR1553B Remote Terminal Driver
	22.1. Introduction
	22.1.1. GR1553B Remote Terminal Hardware
	22.1.2. Driver registration

	22.2. User Interface
	22.2.1. Overview
	22.2.1.1. Accessing an RT device
	22.2.1.2. Introduction to the RT Memory areas
	22.2.1.3. Sub Address Table
	22.2.1.4. Descriptors
	22.2.1.5. Data Buffers
	22.2.1.6. Event Logging
	22.2.1.7. Interrupt service
	22.2.1.8. Indication service
	22.2.1.9. Mode Code support
	22.2.1.10. RT Time

	22.2.2. Application Programming Interface
	22.2.2.1. Data structures
	22.2.2.2. gr1553rt_open
	22.2.2.3. gr1553rt_close
	22.2.2.4. gr1553rt_config_init
	22.2.2.5. gr1553rt_config_alloc
	22.2.2.6. gr1553bm_config_free
	22.2.2.7. gr1553rt_start
	22.2.2.8. gr1553rt_stop
	22.2.2.9. gr1553rt_status
	22.2.2.10. gr1553rt_indication
	22.2.2.11. gr1553rt_evlog_read
	22.2.2.12. gr1553rt_set_vecword
	22.2.2.13. gr1553rt_set_bussts
	22.2.2.14. gr1553rt_sa_setopts
	22.2.2.15. gr1553rt_list_sa
	22.2.2.16. gr1553rt_sa_schedule
	22.2.2.17. gr1553rt_irq_err
	22.2.2.18. gr1553rt_irq_mc
	22.2.2.19. gr1553rt_irq_sa
	22.2.2.20. gr1553rt_list_init
	22.2.2.21. gr1553rt_list_alloc
	22.2.2.22. gr1553rt_bd_init
	22.2.2.23. gr1553rt_bd_update

	23. GR1553B Bus Monitor Driver
	23.1. Introduction
	23.1.1. GR1553B Remote Terminal Hardware
	23.1.2. Driver registration

	23.2. User Interface
	23.2.1. Overview
	23.2.1.1. Accessing a BM device
	23.2.1.2. BM Log memory
	23.2.1.3. Accessing the BM Log memory
	23.2.1.4. Time
	23.2.1.5. Filtering
	23.2.1.6. Interrupt service

	23.2.2. Application Programming Interface
	23.2.2.1. Data structures
	23.2.2.2. gr1553bm_open
	23.2.2.3. gr1553bm_close
	23.2.2.4. gr1553bm_config_init
	23.2.2.5. gr1553bm_config_alloc
	23.2.2.6. gr1553bm_config_free
	23.2.2.7. gr1553bm_start
	23.2.2.8. gr1553bm_stop
	23.2.2.9. gr1553bm_time
	23.2.2.10. gr1553bm_available
	23.2.2.11. gr1553bm_read

	24. GR716 memory protection unit driver
	24.1. Introduction
	24.1.1. User Interface
	24.1.2. Features
	24.1.3. Limitations

	24.2. Driver registration
	24.3. Examples
	24.4. Opening and closing device
	24.5. Operation mode
	24.5.1. Starting and stopping

	24.6. Reset
	24.7. Segment configuration
	24.7.1. Number of segments
	24.7.2. Data structures
	24.7.3. Set
	24.7.4. Get
	24.7.4.1. Example

	25. Memory scrubber
	25.1. Introduction
	25.1.1. Hardware Support
	25.1.2. Driver sources
	25.1.3. Examples

	25.2. Software design overview
	25.2.1. Driver usage

	25.3. Memory scrubber user interface
	25.3.1. Return values
	25.3.2. Opening and closing device
	25.3.3. Configuring the memory range
	25.3.4. Starting/stoping different modes.
	25.3.5. Setting up error thresholds
	25.3.6. Registering an ISR
	25.3.7. Polling the error status

	25.4. API reference

	26. SpaceWire Router Driver
	26.1. Introduction
	26.2. Driver sources
	26.3. Routing
	26.4. Register and access driver
	26.5. Setup routing table
	26.5.1. GR716B

	26.6. Link handling
	26.7. Error handling
	26.8. Time codes
	26.9. Interrupt codes
	26.10. Configure timeouts
	26.11. Configure packet max length
	26.12. Configure Plug-and-Play
	26.13. Read out credit counters

	27. GR716B Real-Time Accelerator (RTA)
	27.1. Introduction
	27.1.1. User Interface
	27.1.2. Features
	27.1.3. Hardware support

	27.2. Examples
	27.3. Software design considerations
	27.4. Driver sources
	27.5. Driver registration
	27.6. Opening devices
	27.7. Starting the RTAs
	27.8. Mailbox communication
	27.9. API reference

